-
开放科学(资源服务)标志码(OSID):
-
令Ω⊂
$\mathbb{R}^{3}$ 是一个边界光滑的有界域. 本文主要研究Ω上具有奇异振荡力的三维非自治Kelvin-Voigt-Brinkman-Forchheimer方程[1-4]:其中:a∈
$\mathbb{R}$ ,b>0,r∈[1,∞),μ>0是流体的运动粘度,α是流体弹性的表征参数,函数u=u(x,t)=(u1(x,t),u2(x,t),u3(x,t))表示流体的速度,p=p(x,t)表示压力. 当a,b=0时,方程(1)为带奇异振荡力的Navier-Stokes-Voigt方程[5-10];当α=0时,方程(1)为带奇异振荡力的Brinkman-Forchheimer方程[11-15];当a,b,α=0时,方程(1)为带奇异振荡力的Navier-Stokes方程[16-17].结合方程(1),我们考虑如下平均Kelvin-Voigt-Brinkman-Forchheimer方程:
记函数
其中函数f0(x,s),f1(x,s)∈Lb2(
$\mathbb{R}$ ,H),Lb2($\mathbb{R}$ ,H)⊆Lloc2(R,H)是平移有界函数空间,即有其中常数M0,M1≥0,定义
综上有
引入函数空间
这里clXS表示S在空间X的闭包,H与V是可分的Hilbert空间. 令H′是H的对偶空间,V′是V的对偶空间,有V↺H=H′↺V′,其中嵌入都是连续且稠密的. H与V分别具有如下内积和范数:
用〈·,·〉表示V′与V之间的对偶集,用|·|p表示Lp(Ω)空间中的范数,用||·||E表示巴纳赫空间E中的范数. 字母C为常数.
方程(1)的前两个等式,可以写成如下抽象形式
令A=-PΔ是Stokes算子,P是从L2(Ω)到H的Leray正交投影,有
令B:V×V→V′是双线性算子,有
这里
对于方程(2)的全局解的存在唯一性,可由文献[2]中的标准方法得到如下定理1.
定理1 假设uτ∈V,f(x,t)在Lloc2(
$\mathbb{R}$ ,H)中平移紧,则方程(2)存在唯一解我们将考虑具有与时间相关的外力驱动的非自治辅助线性方程,对其进行一系列估计.
定理2 假设K(t)∈Lloc2(
$\mathbb{R}$ ,H),则方程(3)存在唯一解且满足不等式
证 用Galerkin逼近法,可以推出解的存在,将方程(3)与AY(t)作内积,可得
由不等式(4)可得
即有
对不等式(5)在[τ,t]上积分,得
易得
将方程(3)与Y(t)作内积,可得
即
对不等式(6)在[t,t+1]上积分,再运用Poincaré不等式得
即有
定理2证毕.
定理3 设k(t)∈Lloc2(
$\mathbb{R}$ ,H),存在常数l满足则带奇异振荡力的线性方程
的解X(t)满足不等式
其中C与K(t)无关.
证 首先记
则由(7)式可推出
由积分中值定理和定理2可得
现令
由X(τ)=0,得
方程(8)在[τ,t]上积分可得
综上所述可得
所以
由不等式(10)可得不等式(9)成立,定理3证毕.
Some Estimates for the 3D Non-autonomous Linearization Kelvin-Voigt-Brinkman-Forchheimer Equations with Singularly Oscillating Forces
-
摘要: 主要研究具有奇异振荡力的三维非自治线性Kelvin-Voigt-Brinkman-Forchheimer方程,先对其具有时间相关外力的辅助线性方程进行一般估计,再通过这些一般估计推导出其具有奇异振荡力线性方程的估计.Abstract: In this paper, we mainly study the three-dimensional non-autonomous linear Kelvin-Voigt-Brinkman-Forchheimer equation with singular oscillating force. Firstly, the general estimation of the auxiliary linear equation with time-dependent external force was carried out, and then the singular oscillation was derived from the results of these general estimates.
-
[1] doi: https://www.sciencedirect.com/science/article/pii/S0362546X13001387 ANH C T, TRANG P T. On the 3D Kelvin-Voigt-Brinkman-Forchheimer Equations in some Unbounded Domains[J]. Nonlinear Analysis: Theory, Methods & Applications, 2013, 89: 36-54. [2] SUK Q, QINY M. The Pullback-Attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer System with Delay[J]. Mathematical Methods in the Applied Sciences, 2018, 41(16): 6122-6129. doi: 10.1002/mma.5123 [3] MOHAN M T. Global and Exponential Attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer Equations[J]. Discrete & Continuous Dynamical Systems-B, 2020, 25(9): 3393-3436. [4] ANH C T, THANHNV. Asymptotic Behavior of the Stochastic Kelvin-Voigt-Brinkman-Forchheimer Equations[J]. Stochastic Analysis and Applications, 2016, 34(3): 441-455. doi: 10.1080/07362994.2016.1149775 [5] QIN Y M, YANG X G, LIU X. Pullback Attractors for a 3D Non-Autonomous Navier-Stokes-Voight Equations[J]. Acta Mathematicae Applicatae Sinica English Series, 2019, 35(4): 737-752. doi: 10.1007/s10255-019-0848-0 [6] KALANTAROV V K, TITI E S. Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations[J]. Chinese Annals of Mathematics, Series B, 2009, 30(6): 697-714. doi: 10.1007/s11401-009-0205-3 [7] QIN Y M, YANG X G, LIUX. Averaging of a 3D Navier-Stokes-Voight Equation with Singularly Oscillating Forces[J]. Nonlinear Analysis: Real World Applications, 2012, 13(2): 893-904. doi: 10.1016/j.nonrwa.2011.08.025 [8] 李戈萍, 朱朝生. 带非线性阻尼项的Navier-Stokes方程的时间解析性[J]. 西南师范大学学报(自然科学版), 2021, 46(3): 126-131. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202103019.htm [9] LI H Y, QINY M. Pullback Attractors for Three-Dimensional Navier-Stokes-Voigt Equations with Delays[J]. Boundary Value Problems, 2013, 2013(1): 1-17. doi: 10.1186/1687-2770-2013-1 [10] NICHE C J. Decay Characterization of Solutions to Navier-Stokes-Voigt Equations in Terms of the Initial Datum[J]. Journal of Differential Equations, 2016, 260(5): 4440-4453. doi: 10.1016/j.jde.2015.11.014 [11] KALANTAROVV, ZELIKS. Smooth Attractors for the Brinkman-Forchheimer Equations with Fast Growing Nonlinearities[J]. Communications on Pure and Applied Analysis, 2012, 11(5): 2037-2054. doi: 10.3934/cpaa.2012.11.2037 [12] SONG X L, WU J H. Non-Autonomous 3D Brinkman-Forchheimer Equation with Singularly Oscillating External Force and Its Uniform Attractor[J]. AIMS Mathematics, 2020, 5(2): 1484-1504. doi: 10.3934/math.2020102 [13] LOUAKED M, SELOULA N, TRABELSI S. Approximation of the Unsteady Brinkman-Forchheimer Equations by the Pressure Stabilization Method[J]. Numerical Methods for Partial Differential Equations, 2017, 33(6): 1949-1965. doi: 10.1002/num.22173 [14] YANG X G, LI L, YAN X. The Structure and Stability of Pullback Attractors for 3D Brinkman-Forchheimer Equation with Delay[J]. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 [15] HAJDUKKW, ROBINSONJC. Energy Equality for the 3D Critical Convective Brinkman-Forchheimer Equations[J]. Journal of Differential Equations, 2017, 263(11): 7141-7161. doi: 10.1016/j.jde.2017.08.001 [16] 刘青, 尚月强. 非定常Navier-Stokes方程有限元算子分裂算法[J]. 西南大学学报(自然科学版), 2019, 41(3): 75-83. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.03.011 [17] 王炷霖, 敬璐如, 冯民富. 定常Navier-Stokes方程的三个梯度-散度稳定化Taylor-Hood有限元[J]. 四川大学学报(自然科学版), 2021, 58(4): 21-26. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX202104003.htm
计量
- 文章访问数: 276
- HTML全文浏览数: 276
- PDF下载数: 30
- 施引文献: 0