彭文伟. 传染病学[M]. 6版. 北京: 人民卫生出版社, 2006.
马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004.
KRIBS-ZALETA C M, VELASCO-HERNÁNDEZ J X. A Simple Vaccination Model with Multiple Endemic States[J]. Mathematical Biosciences, 2000, 164(2): 183-201. doi: 10.1016/S0025-5564(00)00003-1
成小伟, 胡志兴. 具有垂直传染和预防接种的SIVR模型的研究[J]. 科学技术与工程, 2008, 8(15): 4051-4054, 4059. doi: 10.3969/j.issn.1671-1815.2008.15.001
DUAN X C, YUAN S L, LI X Z. Global Stability of an SVIR Model with Age of Vaccination[J]. Applied Mathematics and Computation, 2014, 226: 528-540. doi: 10.1016/j.amc.2013.10.073
LI J Q, MA Z E. Global Analysis of SIS Epidemic Models with Variable Total Population Size[J]. Mathematical and Computer Modelling, 2004, 39(11-12): 1231-1242. doi: 10.1016/j.mcm.2004.06.004
ARIFUL KABIR K M, TANIMOTO J. A Cyclic Epidemic Vaccination Model: Embedding the Attitude of Individuals Toward Vaccination into SVIS Dynamics through Social Interactions[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 581: 126230. doi: 10.1016/j.physa.2021.126230
韩熙瑞, 池建昌, 刘阳. 探讨婴幼儿接种乙肝疫苗在预防乙型肝炎方面的作用[J]. 智慧健康, 2020, 6(27): 73-74.
崔倩, 方宝莲. 不同人群接种乙肝疫苗免疫效果分析[J]. 中西医结合肝病杂志, 2020, 30(4): 363-364.
张玉兰. 接种乙肝疫苗能管多久[J]. 人人健康, 2006(3): 25.
SHAN C H, YI Y F, ZHU H P. Nilpotent Singularities and Dynamics in an SIR Type of Compartmental Model with Hospital Resources[J]. Journal of Differential Equations, 2016, 260(5): 4339-4365. doi: 10.1016/j.jde.2015.11.009
康彩丽. 考虑医疗资源影响下传染病模型的建立与研究[D]. 太原: 中北大学, 2015.
张永鑫, 李桂花, 康彩丽. 具有接种项且考虑医院病床数的SVIS模型的性态分析[J]. 黑龙江大学自然科学学报, 2016, 33(5): 606-610.
白婵, 万辉. 一个传染病模型中的后向分支问题[J]. 南京师大学报(自然科学版), 2017, 40(3): 5-12. doi: 10.3969/j.issn.1001-4616.2017.03.002
董宜静, 李桂花. 考虑潜伏期及医疗资源影响的SEIS模型动力学分析[J]. 黑龙江大学自然科学学报, 2017, 34(2): 169-174.
CARLOS C C, SONG B J. Dynamical Models of Tuberculosis and Their Applications[J]. Mathematical Biosciences and Engineering: MBE, 2004, 1(2): 361-404.