GAJ T, GERSBACH C A, BARBAS C. ZFN, TALEN, and CRISPR/Cas-Based Methods for Genome Engineering [J]. Trends in Biotechnology, 2013, 31(7): 397-405. doi: 10.1016/j.tibtech.2013.04.004
WALTZ E. Gene-edited CRISPR Mushroom Escapes US Regulation [J]. Nature, 2016, 532(7599): 293. doi: 10.1038/nature.2016.19754
LU X J, XUE H Y, KE Z P, et al. CRISPR-Cas9: a New and Promising Player in Gene Therapy [J]. Journal of Medical Genetics, 2015, 52(5): 289-296. doi: 10.1136/jmedgenet-2014-102968
JIANG W Z, ZHOU H B, BI H H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice [J]. Nucleic Acids Research, 2013, 41(20): e188. doi: 10.1093/nar/gkt780
JACOBS T B, LAFAYETTE P R, SCHMITZ R J, et al. Targeted Genome Modifications in Soybean with CRISPR/Cas9 [J]. BMC Biotechnology, 2015, 15: 16. doi: 10.1186/s12896-015-0131-2
FENG C, YUAN J, WANG R, et al. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System [J]. Journal of Genetics and Genomics, 2016, 43(1): 37-43. doi: 10.1016/j.jgg.2015.10.002
BELHAJ K, CHAPARRO-GARCIA A, KAMOUN S, et al. Editing Plant Genomes with CRISPR/Cas9 [J]. Current Opinion in Biotechnology, 2015, 32: 76-84. doi: 10.1016/j.copbio.2014.11.007
LUO S, LI J, STODDARD T J, et al. Non-transgenic Plant Genome Editing Using Purified Sequence-specific Nucleases [J]. Molecular Plant, 2015, 8(9): 1425-1427. doi: 10.1016/j.molp.2015.05.012
JONES H D. Regulatory Uncertainty over Genome Editing [J]. Nature Plants, 2015(1): 14011.
WOO J W, KIM J, KWON S I, et al. DNA-free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins [J]. Nature Biotechnology, 2015, 33(11): 1162-1164. doi: 10.1038/nbt.3389
SVITASHEV S, SCHWARTZ C, LENDERTS B, et al. Genome Editing in Maize Directed by CRISPR-Cas9 Ribonucleoprotein Complexes [J]. Nature Communications, 2016(7): 13274.
LIANG Z, CHEN K L, LI T D, et al. Efficient DNA-free Genome Editing of Bread Wheat Using CRISPR/Cas9 Ribonucleoprotein Complexes [J]. Nature Communications, 2017(8): 14261.
MARILLONNET S, THOERINGER C, KANDZIA R, et al. Systemic Agrobacterium Tumefaciens-mediated Transfection of Viral Replicons for Efficient Transient Expression in Plants [J]. Nature Biotechnology, 2005, 23(6): 718-723. doi: 10.1038/nbt1094
GLEBA Y, KLIMYUK V, MARILLONNET S. Viral Vectors for the Expression of Proteins in Plants [J]. Current Opinion in Biotechnology, 2007, 18(2): 134-141. doi: 10.1016/j.copbio.2007.03.002
ROSS A F. Systemic Acquired Resistance Induced by Localized Virus Infections in Plants [J]. Virology, 1961, 14(3): 340-358. doi: 10.1016/0042-6822(61)90319-1
MARTON I, ZUKER A, SHKLARMAN E, et al. Nontransgenic Genome Modification in Plant Cells [J]. Plant Physiology, 2010, 154(3): 1079-1087. doi: 10.1104/pp.110.164806
TRUONG D J J, KVHNER K, KVHN R, et al. Development of an Intein-mediated Split-Cas9 System for Gene Therapy [J]. Nucleic Acids Research, 2015, 43(13): 6450-6458. doi: 10.1093/nar/gkv601
NUÑEZ J K, HARRINGTON L B, DOUDNA J A. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering [J]. ACS Chemical Biology, 2016, 11(3): 681-688. doi: 10.1021/acschembio.5b01019
SCHMELAS C, GRIMM D. Split Cas9, not Hairs-advancing the Therapeutic Index of CRISPR Technology [J]. Biotechnology Journal, 2018, 13(9): 1700432. doi: 10.1002/biot.201700432
MORETTI A, FONTEYNE L, GIESERT F, et al. Somatic Gene Editing Ameliorates Skeletal and Cardiac Muscle Failure in Pig and Human Models of Duchenne Muscular Dystrophy [J]. Nature Medicine, 2020, 26(2): 207-214. doi: 10.1038/s41591-019-0738-2
HUANG P, XIAO A, ZHOU M G, et al. Heritable Gene Targeting in Zebrafish Using Customized TALENs [J]. Nature Biotechnology, 2011, 29(8): 699-700. doi: 10.1038/nbt.1939
PANDEY S K, NOOKARAJU A, FUJINO T, et al. Virus-induced Gene Silencing (VIGS)-mediated Functional Characterization of Two Genes Involved in Lignocellulosic Secondary Cell Wall Formation [J]. Plant Cell Reports, 2016, 35(11): 2353-2367. doi: 10.1007/s00299-016-2039-2
AVESANI L, MARCONI G, MORANDINI F, et al. Stability of Potato Virus X Expression Vectors is Related to Insert Size: Implications for Replication Models and Risk Assessment [J]. Transgenic Research, 2007, 16(5): 587-597. doi: 10.1007/s11248-006-9051-1
NISHIMASU H, CONG L, YAN W X, et al. Crystal Structure of Staphylococcus Aureus Cas9 [J]. Cell, 2015, 162(5): 1113-1126. doi: 10.1016/j.cell.2015.08.007
XIE K B, MINKENBERG B, YANG Y N. Boosting CRISPR/Cas9 Multiplex Editing Capability with the Endogenous TRNA-processing System [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3570-3575. doi: 10.1073/pnas.1420294112
ANDERSSON M, TURESSON H, OLSSON N, et al. Genome Editing in Potato via CRISPR-Cas9 Ribonucleoprotein Delivery [J]. Physiologia Plantarum, 2018, 164(4): 378-384. doi: 10.1111/ppl.12731
PAUSCH P, AL-SHAYEB B, BISOM-RAPP E, et al. CRISPR-CasΦ from Huge Phages is a Hypercompact Genome Editor [J]. Science, 2020, 369(6501): 333-337. doi: 10.1126/science.abb1400