-
开放科学(资源服务)标志码(OSID):
-
近年来,锌指核酸酶(ZFNs)、转录激活物样效应器核酸酶(TALENs)、聚集的规则间隔短回文重复序列/CRISPR相关蛋白9(CRISPR/Cas9)等基因编辑技术在动植物中得到了快速的发展[1]. CRISPR/Cas9由于其高效性、简便性以及低成本等优点迅速成为最受欢迎的基因编辑技术之一,该技术不仅在生物学方面起着革命性的突破作用,在人类疾病防治和动植物育种方面也具有较大潜力[2-3]. 随着其重要性的增加,CRISPR/Cas9系统先后在拟南芥、烟草、高粱、水稻、黄豆、玉米和其他植物中建立起来[4-7]. CRISPR/Cas9的递送方法主要是基于传统的遗传转化(比如农杆菌)致使外源DNA片段插入到靶标宿主的基因组上[8]. 由于缺乏有效的方法,很多植物难于进行遗传转化. 尽管通过杂交选择后代的方法可以分离转基因元件,但在基因编辑过程中涉及的转基因未来仍可能会引发公众和监管部门的注意[9]. 为了克服监管障碍,Woo等[10]在体外将Cas9蛋白和gRNA复合物进行组装后,利用聚乙二醇将其转染到原生质体中,从而在拟南芥、烟草、莴苣和水稻的再生植株中实现靶向突变. 该策略在玉米和小麦中也展现了很高的效率和更低的脱靶[11-12],然而,该方法的前提必须是要分离获得靶标植物的原生质体,否则该策略就不能进行. 目前该方法在大部分的非模式植物中基本上还没有成功,而病毒递送CRISPR元件也许是一个比较好的方法,原因如下:1) 病毒不会整合到宿主植物基因组中,因此其产生的是非转基因植物[13];2) RNA病毒能高量表达外源蛋白[14];3) 马铃薯病毒X(PVX)能从一个细胞移动到另外一个细胞,从而系统感染植物[15]. 由于大部分的病毒载体只能运载较小的蛋白,比如锌指核酸酶[16]等,而来源于金黄色葡萄球菌的SaCas9(3.1kb)由于其太大,因此不能直接在植物病毒中表达. 有研究报道,可以将Cas9分成两段在病毒载体中独立表达,然后采用多种系统将分段的Cas9连接起来,从而行使完整Cas9的编辑作用,这些系统包括:1) sgRNA作为支架用于Cas9组装;2) 雷帕霉素控制的FKBP/FRB系统;3) 光调控的磁性系统;4) 内含肽[17-19]. Moretti等[20]采用腺相关病毒载体(rAAV)运载内含肽介导的Cas9,成功在杜兴氏肌肉萎缩症模型猪中进行体细胞基因编辑,有效改善了骨骼肌和心肌衰竭.
本研究我们开发了一个内含肽介导的片段化Cas9系统,用于植物的基因编辑. 将SaCas9基因分割成3个部分,通过内含肽DnaB或DnaE将其进行组合,并采用马铃薯病毒X载体进行递送,使其能系统感染烟草.
Intein-Mediated Split-Cas9: a Transgene-Free Plant Genome Editing System
-
摘要:
CRISPR/Cas9技术在植物的基础研究以及谷物的遗传改造方面展现出了前所未有的潜力. 目前植物基因编辑方法大多是基于农杆菌介导的遗传转化, 该方法不仅涉及转基因过程, 容易引发公众关注, 同时该方法对较难转化的植物而言有一定的技术挑战. 研究开发了一个简单的非转基因植物基因编辑方法, 即采用病毒递送的方式将片段化的Cas9和gRNA运送到烟草中. 为了适应马铃薯病毒X载体的运载能力, 将金黄色葡萄球菌SaCas9分成3个部分, 用2个片段化的内含肽将其连接成完整的Cas9蛋白. 结果表明: 在培养的细胞和植物叶片中, 2个片段化的内含肽均能使3个片段化的Cas9重组为完整的Cas9蛋白. 将3个片段化的载体和1个sgRNA载体注射到叶片中, 能对PDS基因进行靶向编辑. 该非转基因的植物基因编辑方法可能对其他多种植物有一定的应用效果.
-
关键词:
- CRSIPR/Cas9技术 /
- 基因工程 /
- 基因组修饰 /
- 植物基因编辑
Abstract:Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 [JP](CRISPR/Cas9)-induced genomic engineering has shown unprecedented perspectives for basic plant research and crop genetic improvements. However, current plant genome editing methods are mostly based on Agrobacterium transformation. This procedure involves transgenic intermediates that could raise regulatory concernsand technical challenges when used with hard-to-transform plants. Here, we describe a simple transgene-free plant editing method for tobacco using viral delivery of spliced Cas9/gRNA. To fit the delivery capacity of the systemic infectious potato virus X vector, we split the Staphylococcus aureus Cas9 into three parts by combining two split-inteins. We showed that trans-splicing two inteins reconstitutes the full Cas9 protein in cultured cells and plant leaves. The direct injection of three split-Cas9 vectors and a gRNA vector into leaves could induce targeted genomic modifications with high efficiency. Our method revealed that Cas9 could be trans-spliced into three separate parts. This new simple transgene-free plant editing method may be applicable to various other plant species.
-
Key words:
- CRISPR/Cas9 /
- genomic engineering /
- genomic modifications /
- plant genome editing .
-
表 1 在烟草叶片中检测PDS突变
烟草植株编号 阳性克隆子数目/总克隆子数目 突变率/% 1 0/46 0.00 2 1/80 1.25 3 0/28 0.00 4 1/20 5.00 5 1/39 2.56 -
[1] GAJ T, GERSBACH C A, BARBAS C. ZFN, TALEN, and CRISPR/Cas-Based Methods for Genome Engineering [J]. Trends in Biotechnology, 2013, 31(7): 397-405. doi: 10.1016/j.tibtech.2013.04.004 [2] WALTZ E. Gene-edited CRISPR Mushroom Escapes US Regulation [J]. Nature, 2016, 532(7599): 293. doi: 10.1038/nature.2016.19754 [3] LU X J, XUE H Y, KE Z P, et al. CRISPR-Cas9: a New and Promising Player in Gene Therapy [J]. Journal of Medical Genetics, 2015, 52(5): 289-296. doi: 10.1136/jmedgenet-2014-102968 [4] JIANG W Z, ZHOU H B, BI H H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice [J]. Nucleic Acids Research, 2013, 41(20): e188. doi: 10.1093/nar/gkt780 [5] JACOBS T B, LAFAYETTE P R, SCHMITZ R J, et al. Targeted Genome Modifications in Soybean with CRISPR/Cas9 [J]. BMC Biotechnology, 2015, 15: 16. doi: 10.1186/s12896-015-0131-2 [6] FENG C, YUAN J, WANG R, et al. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System [J]. Journal of Genetics and Genomics, 2016, 43(1): 37-43. doi: 10.1016/j.jgg.2015.10.002 [7] BELHAJ K, CHAPARRO-GARCIA A, KAMOUN S, et al. Editing Plant Genomes with CRISPR/Cas9 [J]. Current Opinion in Biotechnology, 2015, 32: 76-84. doi: 10.1016/j.copbio.2014.11.007 [8] LUO S, LI J, STODDARD T J, et al. Non-transgenic Plant Genome Editing Using Purified Sequence-specific Nucleases [J]. Molecular Plant, 2015, 8(9): 1425-1427. doi: 10.1016/j.molp.2015.05.012 [9] JONES H D. Regulatory Uncertainty over Genome Editing [J]. Nature Plants, 2015(1): 14011. [10] WOO J W, KIM J, KWON S I, et al. DNA-free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins [J]. Nature Biotechnology, 2015, 33(11): 1162-1164. doi: 10.1038/nbt.3389 [11] SVITASHEV S, SCHWARTZ C, LENDERTS B, et al. Genome Editing in Maize Directed by CRISPR-Cas9 Ribonucleoprotein Complexes [J]. Nature Communications, 2016(7): 13274. [12] LIANG Z, CHEN K L, LI T D, et al. Efficient DNA-free Genome Editing of Bread Wheat Using CRISPR/Cas9 Ribonucleoprotein Complexes [J]. Nature Communications, 2017(8): 14261. [13] MARILLONNET S, THOERINGER C, KANDZIA R, et al. Systemic Agrobacterium Tumefaciens-mediated Transfection of Viral Replicons for Efficient Transient Expression in Plants [J]. Nature Biotechnology, 2005, 23(6): 718-723. doi: 10.1038/nbt1094 [14] GLEBA Y, KLIMYUK V, MARILLONNET S. Viral Vectors for the Expression of Proteins in Plants [J]. Current Opinion in Biotechnology, 2007, 18(2): 134-141. doi: 10.1016/j.copbio.2007.03.002 [15] ROSS A F. Systemic Acquired Resistance Induced by Localized Virus Infections in Plants [J]. Virology, 1961, 14(3): 340-358. doi: 10.1016/0042-6822(61)90319-1 [16] MARTON I, ZUKER A, SHKLARMAN E, et al. Nontransgenic Genome Modification in Plant Cells [J]. Plant Physiology, 2010, 154(3): 1079-1087. doi: 10.1104/pp.110.164806 [17] TRUONG D J J, KVHNER K, KVHN R, et al. Development of an Intein-mediated Split-Cas9 System for Gene Therapy [J]. Nucleic Acids Research, 2015, 43(13): 6450-6458. doi: 10.1093/nar/gkv601 [18] NUÑEZ J K, HARRINGTON L B, DOUDNA J A. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering [J]. ACS Chemical Biology, 2016, 11(3): 681-688. doi: 10.1021/acschembio.5b01019 [19] SCHMELAS C, GRIMM D. Split Cas9, not Hairs-advancing the Therapeutic Index of CRISPR Technology [J]. Biotechnology Journal, 2018, 13(9): 1700432. doi: 10.1002/biot.201700432 [20] MORETTI A, FONTEYNE L, GIESERT F, et al. Somatic Gene Editing Ameliorates Skeletal and Cardiac Muscle Failure in Pig and Human Models of Duchenne Muscular Dystrophy [J]. Nature Medicine, 2020, 26(2): 207-214. doi: 10.1038/s41591-019-0738-2 [21] HUANG P, XIAO A, ZHOU M G, et al. Heritable Gene Targeting in Zebrafish Using Customized TALENs [J]. Nature Biotechnology, 2011, 29(8): 699-700. doi: 10.1038/nbt.1939 [22] PANDEY S K, NOOKARAJU A, FUJINO T, et al. Virus-induced Gene Silencing (VIGS)-mediated Functional Characterization of Two Genes Involved in Lignocellulosic Secondary Cell Wall Formation [J]. Plant Cell Reports, 2016, 35(11): 2353-2367. doi: 10.1007/s00299-016-2039-2 [23] AVESANI L, MARCONI G, MORANDINI F, et al. Stability of Potato Virus X Expression Vectors is Related to Insert Size: Implications for Replication Models and Risk Assessment [J]. Transgenic Research, 2007, 16(5): 587-597. doi: 10.1007/s11248-006-9051-1 [24] NISHIMASU H, CONG L, YAN W X, et al. Crystal Structure of Staphylococcus Aureus Cas9 [J]. Cell, 2015, 162(5): 1113-1126. doi: 10.1016/j.cell.2015.08.007 [25] XIE K B, MINKENBERG B, YANG Y N. Boosting CRISPR/Cas9 Multiplex Editing Capability with the Endogenous TRNA-processing System [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3570-3575. doi: 10.1073/pnas.1420294112 [26] ANDERSSON M, TURESSON H, OLSSON N, et al. Genome Editing in Potato via CRISPR-Cas9 Ribonucleoprotein Delivery [J]. Physiologia Plantarum, 2018, 164(4): 378-384. doi: 10.1111/ppl.12731 [27] PAUSCH P, AL-SHAYEB B, BISOM-RAPP E, et al. CRISPR-CasΦ from Huge Phages is a Hypercompact Genome Editor [J]. Science, 2020, 369(6501): 333-337. doi: 10.1126/science.abb1400