| CARTER T E.Optimal Impulsive Space Trajectories Based on Linear Equations[J].Journal of Optimization Theory and Applications,1991,70(2):277-297. |
| CARTER T E.Necessary and Sufficient Conditions for Optimal Impulsive Rendezvous with Linear Equations of Motion[J].Dynamics and Control,2000,10(3):219-227. |
| ZHOU J W, Li Y K.Existence and Multiplicity of Solutions for Some Dirichlet Problems with Impulsive Effects[J].Nonlinear Analysis:Theory,Methods & Applications,2009,71(7-8):2856-2865. |
| MAWHIN J,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989. |
| TANG C L.Periodic Solutions for Nonautonomous Second Order Systems with Sublinear Nonlinearity[J].Proceedings of the American Mathematical Society,1998,126(11):3263-3270. |
| TANG C L,WU X P.Subharmonic Solutions for Nonautonomous Sublinear Second Order Hamiltonian Systems[J].Journal of Mathematical Analysis and Applications,2005,304(1):383-393. |
| DING W,QIAN D B.Periodic Solutions for Sublinear Systems via Variational Approach[J].Nonlinear Analysis:Real World Applications,2010,11(4):2603-2609. |
| RABINOWITZ P.On Subharmonic Solutions of Hamiltonian Systems[J].Communications on Pure and Applied Mathematics, 2010,31(2):157-184. |
| FONDA A,LAZER A C.Subharmonic Solutions of Conservative Systems with Nonconvex Potentials[J].Proceedings of the American Mathematical Society,1992,115(1):183-190. |
| JIANG Q,TANG C L.Periodic and Subharmonic Solutions of a Class of Subquadratic Second-Order Hamiltonian Systems[J].Journal of Mathematical Analysis and Applications,2007,328(1):380-389. |
| WANG Z,ZHANG J.Periodic Solutions for Nonautonomous Second Order Hamiltonian Systems with Sublinear Nonlinearity[J].Boundary Value Problems,2011,2011(1):1-14. |
| NIETO J J,O'REGAN D.Variational Approach to Impulsive Differential Equations[J].Nonlinear Analysis:Real World Applications,2009,10(2):680-690. |