留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一般次线性条件下脉冲方程的周期解

上一篇

下一篇

姜黎鑫1,丁卫2. 一般次线性条件下脉冲方程的周期解[J]. 西南师范大学学报(自然科学版), 2018, 43(11): 18-23. doi: 10.13718/j.cnki.xsxb.2018.11.004
引用本文: 姜黎鑫1,丁卫2. 一般次线性条件下脉冲方程的周期解[J]. 西南师范大学学报(自然科学版), 2018, 43(11): 18-23. doi: 10.13718/j.cnki.xsxb.2018.11.004
JIANG Li-xin1, DING Wei2. Periodic Solutions of Generalized Sublinear Impulsive Hamiltonian Systems[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 18-23. doi: 10.13718/j.cnki.xsxb.2018.11.004
Citation: JIANG Li-xin1, DING Wei2. Periodic Solutions of Generalized Sublinear Impulsive Hamiltonian Systems[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 18-23. doi: 10.13718/j.cnki.xsxb.2018.11.004

一般次线性条件下脉冲方程的周期解

Periodic Solutions of Generalized Sublinear Impulsive Hamiltonian Systems

  • 摘要: 次线性条件下,脉冲系统x″+f(t,x)=0,a.e.t∈[0,2π]Δx'(tj):=x'(tj+)-x'(tj-)=Ij(x(tj))j=1,2,…,p的周期解的存在性被广泛研究.这里的次线性主要体现在f(t,x)被下面次线性函数控制:|f(t,x)|≤g(t)|x|α+h(t)其中g,h∈L1(0,2π;R+),α∈[0,1).本文减弱了上述次线性控制的要求,利用临界点理论证明了当f(t,x满足某个函数类条件时,脉冲方程周期解是存在的,从而推广了相关结果.
  • 加载中
  • [1] CARTER T E.Optimal Impulsive Space Trajectories Based on Linear Equations[J].Journal of Optimization Theory and Applications,1991,70(2):277-297.
    [2] CARTER T E.Necessary and Sufficient Conditions for Optimal Impulsive Rendezvous with Linear Equations of Motion[J].Dynamics and Control,2000,10(3):219-227.
    [3] ZHOU J W, Li Y K.Existence and Multiplicity of Solutions for Some Dirichlet Problems with Impulsive Effects[J].Nonlinear Analysis:Theory,Methods & Applications,2009,71(7-8):2856-2865.
    [4] MAWHIN J,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.
    [5] TANG C L.Periodic Solutions for Nonautonomous Second Order Systems with Sublinear Nonlinearity[J].Proceedings of the American Mathematical Society,1998,126(11):3263-3270.
    [6] TANG C L,WU X P.Subharmonic Solutions for Nonautonomous Sublinear Second Order Hamiltonian Systems[J].Journal of Mathematical Analysis and Applications,2005,304(1):383-393.
    [7] DING W,QIAN D B.Periodic Solutions for Sublinear Systems via Variational Approach[J].Nonlinear Analysis:Real World Applications,2010,11(4):2603-2609.
    [8] RABINOWITZ P.On Subharmonic Solutions of Hamiltonian Systems[J].Communications on Pure and Applied Mathematics, 2010,31(2):157-184.
    [9] FONDA A,LAZER A C.Subharmonic Solutions of Conservative Systems with Nonconvex Potentials[J].Proceedings of the American Mathematical Society,1992,115(1):183-190.
    [10] JIANG Q,TANG C L.Periodic and Subharmonic Solutions of a Class of Subquadratic Second-Order Hamiltonian Systems[J].Journal of Mathematical Analysis and Applications,2007,328(1):380-389.
    [11] WANG Z,ZHANG J.Periodic Solutions for Nonautonomous Second Order Hamiltonian Systems with Sublinear Nonlinearity[J].Boundary Value Problems,2011,2011(1):1-14.
    [12] NIETO J J,O'REGAN D.Variational Approach to Impulsive Differential Equations[J].Nonlinear Analysis:Real World Applications,2009,10(2):680-690.
  • 加载中
计量
  • 文章访问数:  746
  • HTML全文浏览数:  531
  • PDF下载数:  29
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-10-30

一般次线性条件下脉冲方程的周期解

  • 1. 南通师范高等专科学校 数理系, 江苏 南通 226006;
    2. 南通大学 理学院, 江苏 南通 226007

摘要: 次线性条件下,脉冲系统x″+f(t,x)=0,a.e.t∈[0,2π]Δx'(tj):=x'(tj+)-x'(tj-)=Ij(x(tj))j=1,2,…,p的周期解的存在性被广泛研究.这里的次线性主要体现在f(t,x)被下面次线性函数控制:|f(t,x)|≤g(t)|x|α+h(t)其中g,h∈L1(0,2π;R+),α∈[0,1).本文减弱了上述次线性控制的要求,利用临界点理论证明了当f(t,x满足某个函数类条件时,脉冲方程周期解是存在的,从而推广了相关结果.

English Abstract

参考文献 (12)

目录

/

返回文章
返回