|
CHAN M H T, KIM P S. Modelling a Wolbachia Invasion Using a Slow-Fast Dispersal Reaction-Diffusion Approach [J]. Bulletin of Mathematical Biology, 2013, 75(9):1501-1523. doi: 10.1007/s11538-013-9857-y
|
|
XI Z, KHOO C C, DOBSON S L. Wolbachia Establishment and Invasion in an Aedes Aegypti Laboratory Population [J]. Japanese Economic Review, 2005, 310(5746):326-328.
|
|
NDII Z. Modelling the Introduction of Wolbachia into Aedes Aegypti Mosquitoes to Reduce Dengue Transmission [J]. Anziam Journal, 2012, 53(3):213-227. doi: 10.1017/S1446181112000132
|
R SIC′ G, ENDERSBY N M, WILLIAMS C, et al. Using Wolbachia-Based Release for Suppression of Aedes Mosquitoes:Insights from Genetic Data and Population Simulations [J]. Ecological Applications, 2014, 24(5):1226-1234.
|
|
ZHENG B, TANG M, YU J. Modeling Wolbachia Spread in Mosquitoes through Delay Differential Equations [J]. Siam Journal on Applied Mathematics, 2014, 74(3):743-770. doi: 10.1137/13093354X
|
|
郑小英, 刘起勇, 奚志勇.基于沃尔巴克氏体的蚊媒和蚊媒病控制的生物安全性[J].中国媒介生物学及控制杂志, 2014, 25(2):93-96. doi: 10.11853/j.issn.1003.4692.2014.02.001
|
|
NDII M Z, ALLINGHAM D, HICKSON R I, et al. The Effect of Wolbachia on Dengue Dynamics in the Presence of Two Serotypes of Dengue:Symmetric and Asymmetric Epidemiological Characteristics [J]. Epidemiology & Infection, 2016, 144(13):2874-2882.
|
|
HANCOCK P A, WHITE V L, CALLAHAN A G, et al. Density-Dependent Population Dynamics in Aedes Aegypti, Slow the Spread of W Mel Wolbachia [J]. Journal of Applied Ecology, 2016, 53(3):785-793. doi: 10.1111/1365-2664.12620
|
|
SMITH H. An Introduction to Delay Differential Equations with Applications to the Life Sciences [M]. New York:Springer, 2010:49-54.
|