MILLER G A, MORENO H C. Non-Abelian Groups in Which Every Subgroup is Abelian [J]. Trans Amer Math Soc, 1903, 4(4): 398-404. doi: 10.1090/S0002-9947-1903-1500650-9
LI S R, ZHAO X B. Finite Groups with Few Non-Cyclic Subgroups [J]. Journal of Group Theory, 2007(10): 225-233.
MENG W, LU J K, LI S R. Finite Groups with Few Non-Cyclic Subgroups Ⅱ [J]. Algebra Colloquium, 2013, 20(1): 81-88. doi: 10.1142/S1005386713000072
郭凯艳, 曹洪平, 陈贵云.非循环子群共轭类个数为5的有限幂零群[J].西南师范大学学报(自然科学版), 2012, 37(4): 12-15.
孟伟, 卢家宽, 李世荣.恰有4个非循环子群共轭类的有限幂零群[J].广西大学学报(自然科学版), 2009, 34(6): 845-848.
王同洲. 非循环子群共轭类个数为6的有限幂零群[D]. 苏州: 苏州大学, 2013.
赵冲, 吕恒.非循环子群的共轭类个数为7的有限幂零群[J].西南大学学报(自然科学版), 2015, 37(10): 89-92.
徐明曜.有限群导引[M].北京:科学出版社, 2001.
BERKOVICH Y. Groups of Prime Power Order(Vol.1) [M]. Berlin: Walter de Gruyter, 2008.