IBRGÜEN-MONDRAGÓN E, ESTEVA L. A Mathematical Model on Mycobacterium Tuberculosis Dynamics into the Granuloma[J]. Revista Colombiana de Áticas, 2012, 46(1): 39-65.
IBRGVEN-MONDRAGÜN E, ESTEVA L. On the Interactions of Sensitive and Resistant Mycobacterium Tuberculosis to Antibiotics[J]. Mathematical Biosciences, 2013, 246(1): 84-93. doi: 10.1016/j.mbs.2013.08.005
WIGGINTON J E, KIRSCHNER D. A Model to Predict Cell-Mediated Immune Regulatory Mechanisms During Human Infection with Mycobacterium Tuberculosis[J]. The Journal of Immunology, 2001, 166(3): 1951-1967. doi: 10.4049/jimmunol.166.3.1951
陈虹燕, 王稳地.具有Beddington-DeAngelis功能反应的疟疾模型的稳定性分析[J].西南大学学报(自然科学版), 2015, 37(9): 94-99.
付瑞, 王稳地, 陈虹燕, 等.一类考虑饱和发生率的HIV感染模型的稳定性分析[J].西南大学学报(自然科学版), 2015, 37(3): 76-81.
DE BOER R J. Which of Our Modeling Predictions Are Robust?[J]. Plos Computational Biology, 2012, 8(7): 495-512.
VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission[J]. Mathematical Biosciences, 2002, 180(2): 29-48.
LI M Y, WANG L. Global Stability in Some SEIR Epidemic Models[M]. New York: Springer, 2002: 295-311.
TIAN Y, LIU X. Global Dynamics of a Virus Dynamical Model with General Incidence Rate and Cure Rate[J]. Nonlinear Analysis: Real World Applications, 2014, 16(4): 17-26.