HERRIDGE D F, PEOPLES M B, BODDEY R M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems[J]. Plant Soil, 2008, 311(1):1-18.
李春明, 张磊, 徐征, 等.根际联合固氮菌对玉米小麦及红薯的增产效应[J].西南农业大学学报, 2003, 25(6):506-509.
甄安忠, 何文高, 陈懿, 等.施氮量和留叶数对烤烟K326碳代谢和品质的影响[J].西南大学学报(自然科学版), 2016, 38(9):20-25.
王园春. 大豆根瘤菌共生基因的筛选以及三型分泌系统效应分子的鉴定[D]. 北京: 中国农业大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10019-1015717653.htm
蒲强, 谭志远, 彭桂香, 等.根瘤菌分类的新进展[J].微生物学通报, 2016, 43(3):619-633.
VANCE C P, EGLI M A, GRIFFITH S M, et al. Plant Regulated Aspects of Nodulation and N2 Fixation[J]. Plant Cell and Environment, 1988, 11(5):413-427. doi: 10.1111/pce.1988.11.issue-5
SUGANUMA N, NAKAMURA Y, YAMAMOTO M, et al. The Lotus japonicus Sen1 Gene Controls Rhizobial Differentiation Into Nitrogen-Fixing Bacteroids in Nodules[J]. Molecular Genetics and Genomics, 2003, 269(3):312-320. doi: 10.1007/s00438-003-0840-4
LEROUGE P, ROCHE P, FAUCHER C, et al. Symbiotic Host-Specificity of Rhizobium-Meliloti is Determined by a Sulfated and Acylated Glucosamine Oligosaccharide Signal[J]. Nature, 1990, 344(6268):781-784. doi: 10.1038/344781a0
BORISOV A Y, MORZHINA E V, KULIKOVA O A, et al. New Symbiotic Mutants of Pea (Pisum-Sativum L) Affecting Either Nodule Initiation or Symbiosome Development[J]. Symbiosis, 1993, 14(1-3):297-313.
MORZHINA E V, TSYGANOV V E, BORISOV A Y, et al. Four Developmental Stages Identified by Genetic Dissection of Pea (Pisum sativum L.) Root Nodule Morphogenesis[J]. Plant Science, 2000, 155(1):75-83. doi: 10.1016/S0168-9452(00)00207-7
SUGANUMA N, SONODA N, NAKANE C, et al. Bacteroids Isolated from Ineffective Nodules of Pisum sativum Mutant E135(sym13) Lack Nitrogenase Activity But Contain the Two Protein Components of Nitrogenase[J]. Plant and Cell Physiology, 1998, 39(10):1093-1098. doi: 10.1093/oxfordjournals.pcp.a029307
STOUGAARD J. Regulators and Regulation of Legume Root Nodule Development[J]. Plant Physiology, 2000, 124(2):531-540. doi: 10.1104/pp.124.2.531
MADSEN E B, MADSEN L H, RADUTOIU S, et al. A Receptor Kinase Gene of the LysM Type is Involved in Legume Perception of Rhizobial Signals[J]. Nature, 2003, 425(6958):637-640. doi: 10.1038/nature02045
SAGAN M, DUC G. Sym28 and Sym29, Two New Genes Involved in Regulation of Nodulation in Pea (Pisum sativum L)[J]. Symbiosis, 1996, 20(3):229-245.
OOKI Y, BANAB M, YANO K, et al. Characterization of the Lotus japonicus Symbiotic Mutant Lot1 That Shows a Reduced Nodule Number and Distorted Trichomes[J]. Plant Physiology, 2005, 137(4):1261-1271. doi: 10.1104/pp.104.056630
IMAIZUMIANRAKU H, KOUCHI H, SYONO K, et al. Analysis of Enod40 Expression in Alb1, a Symbiotic Mutant of Lotus japonicus That Forms Empty Nodules with Incompletely Developed Nodule Vascular Bundles[J]. Molecular and General Genetics, 2000, 264(4):402-410. doi: 10.1007/s004380000330
HOSSAIN M S, UMEHARA Y, KOUCHI H, et al. A Novel Fix-Symbiotic Mutant of Lotus Japonicus, Ljsym105, Shows Impaired Development and Premature Deterioration of Nodule Infected Cells and Symbiosomes[J]. Molecular Plant-Microbe Interactions, 2006, 19(7):780-788. doi: 10.1094/MPMI-19-0780
车成来, 金龙哲, 林花, 等.利用EMS筛选豆科模式植物百脉根的根瘤突变体及突变部位[J].延边大学农学学报, 2016, 38(3):235-241.
BROUGHTON W J, DILWORTH M Y. Control of Leghaemoglobin Synthesis in Snake Beans[J]. Biochemical Journal, 1971, 125(4):1075-1080. doi: 10.1042/bj1251075
ISHIKAWA K, YOKOTA K, LI Y Y, et al. Isolation of a Novel Root-Determined Hypernodulation Mutant Rdh1 of Lotus japonicus[J]. Soil Science and Plant Nutrition, 2008, 54(2):259-263. doi: 10.1111/j.1747-0765.2007.00240.x
TU J C. Rhizobial Root Nodules of Soybean as Revealed by Scanning and Transmission Electron Microscopy[J]. Phytopathology, 1975, 65(4):447-454. doi: 10.1094/Phyto-65-447
IMAIZUMIANRAKU H, KAWAGUCHI M, KOIWA H, et al. Two Ineffective-Nodulating Mutants of Lotus japonicus-Different Phenotypes Caused by the Blockage of Endocytotic Bacterial Release and Nodule Maturation[J]. Plant Cell Physiology, 1997, 38(7):871-881. doi: 10.1093/oxfordjournals.pcp.a029246
NOVÁK K, PEŠINA K, NEBESÁROVÁ J, et al. Symbiotic Tissue Degradation Pattern in the Ineffective Nodules of 3 Nodulation Mutants of Pea(Pisum-Sativum L)[J]. Annals of Botany, 1995, 76(3):303-313. doi: 10.1006/anbo.1995.1100
BANBA M, SIDDIQUE A B, KOUCHI H, et al. Lotus japonicus forms Early Senescent Root Nodules with Rhizobium etli[J]. Molecular Plant-Microbe Interactions, 2001, 14(2):173-180. doi: 10.1094/MPMI.2001.14.2.173
SCHAUSER L, HANDBERG K, SANDAL N, et al. Symbiotic Mutants Deficient in Nodule Establishment Identified After T-DNA Transformation of Lotus japonicus[J]. Molecular General Genetics, 1998, 259(4):414-423. doi: 10.1007/s004380050831
KUMAGAI H, HAKOYAMA T, UMEHARA Y, et al. A Novel Ankyrin-Repeat Membrane Protein, IGN1, is Required for Persistence of Nitrogen-Fixing Symbiosis in Root Nodules of Lotus japonicus[J]. Plant Physiology, 2007, 143(3):1293-1305. doi: 10.1104/pp.106.095356
KAWAGUCHI M, IMAIZUMI-ANRAKU H, KOIWA H, et al. Root, Root Hair, and Symbiaotic Mutants of the Model Legume Lotus japonicus[J]. Molecular Plant-Microbe Interactions, 2002, 15(1):17-26. doi: 10.1094/MPMI.2002.15.1.17
SUGANUMA N, NAKAMURA Y, YAMAMOTO M, et al. The Lotus japonicus Sen1 Gene Controls Rhizobial Differentiation Into Nitrogen-Fixing Bacteroids in Nodules[J]. Molecular Genetics and Genomics, 2003, 269(3):312-320. doi: 10.1007/s00438-003-0840-4