-
氮是植物生长发育所需重要元素之一,空气中约占80%的分子态氮,无法被绝大多数植物所利用,只能从土壤中吸收结合态氮.然而,土壤中的含氮化合物并非土壤本身固有,而是来自生物固氮的产物,包括土壤微生物固氮和豆科植物根瘤菌固氮.据估计,地球表面上,生物固氮总量约为70t/年;其中,豆科植物根瘤菌固氮量约占60%[1-5].
根瘤是豆科植物固氮的场所,是由固氮细菌在植物根系上建成的共生组织.根瘤菌不仅从根瘤细胞中摄取自身生活所需的养分,而且能固定游离氮、合成含氮化合物,供豆科植物生长发育所需的氮素.另外,由于根瘤的脱落和结有根瘤的根系遗留在土壤中,增加土壤的肥力.据研究,豆科植物中,类菌体分化和固氮体系形成与一些宿主基因有关[6-7];根瘤菌侵入根细胞后,宿主细胞的类黄酮诱导根瘤菌的nod基因表达、分泌出根瘤菌结瘤因子(Nod factor),进而引起宿主植物的根瘤形成[8].在豌豆中,sym31和sym32基因在根瘤的形成中具有被感染细胞识别入侵的根瘤菌的功能[9-10].虽然豌豆的Sym13基因被推定为在根瘤菌分化成类菌体时能够表达氮化酶蛋白的功能,但在根瘤中并未检测到氮化酶的活性[11].
百脉根是Stougaard等提倡的豆科植物分子遗传学研究的模式植物[12];国内外研究者采用多种诱变法获得了大量百脉根突变体.这些无效根瘤突变体的根瘤,不仅固氮能力下降明显,而且根瘤的早期老化现象严重[12-17];其中,结白色或绿色根瘤的无效根瘤突变体,被用于共生固氮体系的建立和宿主基因的研究中.根瘤菌侵入根细胞后建立共生关系的过程极为复杂,根瘤菌的Nod factor收容和早期信号传达后,根瘤菌感染和入侵细胞的过程、在被感染寄主细胞内建立共生关系、类菌体分化、共生根瘤的成熟及维持机制等诸多问题还有待进一步深入阐明.
本研究利用EMS诱变处理百脉根MG-20种子而获得的突变体库中筛选出的3种无效根瘤突变体[18]为材料,在前期研究的基础上,对所筛选出的无效根瘤突变体植株的生物量及固氮能进行测定,并对无效根瘤进行电镜切片观察,为今后进一步阐明固氮机制奠定基础.
Biomass of Ineffective Nodule Mutants of Lotus japonicus and Electron Microscopic Observation of Their Ineffective Nodules
-
摘要: 百脉根是研究豆科植物根瘤形成和共生固氮分子机理的一种重要模式植物.为探索百脉根根瘤的形成机制,以EMS诱导野生MG-20突变并筛选的No.1006,No.486和No.2568等3种无效根瘤突变体为材料,测定其突变体植株生物量、根瘤数及固氮能,并对无效根瘤中根瘤菌感染的细胞进行电镜观察.结果表明:No.1006是根瘤原基突变体,No.486是白色无效根瘤突变体,No.2568是绿色无效根瘤突变体;这3种无效根瘤突变体植株生长至30 d时,根瘤数和固氮能以及株高、地上部干质量、根干质量和根长等生物量与MG-20野生株差异无统计学意义(p>0.05),但生长至40 d开始均显著低于野生株(p < 0.05).No.486的白色无效根瘤和No.2568的绿色无效根瘤,经切片后在电镜下观察,无效根瘤细胞均存在不同程度的破坏;其中No.2568的绿色无效根瘤的细胞和由根瘤菌转化来的类菌体的破坏程度远大于No.486的白色根瘤.Abstract: Lotus japonicus is one of the important model plants in exploring the mechanism of nodule formation and symbiotic nitrogen fixation of legumes. In order to elucidate the mechanism of nodule formation in L. japonicus and the early aging of its ineffective nodules, three kinds of ineffective nodule mutants (No.1006, No.486 and No.2568) obtained from EMS-treated MG-20 seeds were used as the experiment materials, and phenotypic analysis and determination of nitrogen fixation capacity of their ineffective nodules were carried out, and rhizobia-infected cells of the nodules were observed with an electron microscope. The results showed that No.1006 was a nodule primordium mutant, No.486 a white nodule mutant and No.2568 a green nodule mutant. The number of nodules and their nitrogen fixation capacity as well as plant height, shoot dry weight, root dry weight and root length for these mutants were not significantly different from those of the wild type plant in the first 30 days of growth (p>0.05), but were significantly lower than the wild type plant after 40 days of growth (p < 0.05). Electron microscopic examination revealed that the cells of ineffective nodules of mutants No.486 and No.2568 were damaged to varying degrees; and that cells and bacterioids in the green ineffective nodules of No.2568 were more seriously damaged than those of the white ineffective nodules of No.486.
-
Key words:
- Lotus japonicus /
- ineffective nodule /
- bacterioid /
- nitrogen fixing capacity /
- biomass .
-
[1] HERRIDGE D F, PEOPLES M B, BODDEY R M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems[J]. Plant Soil, 2008, 311(1):1-18. [2] 李春明, 张磊, 徐征, 等.根际联合固氮菌对玉米小麦及红薯的增产效应[J].西南农业大学学报, 2003, 25(6):506-509. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnnydxxb200306010 [3] 甄安忠, 何文高, 陈懿, 等.施氮量和留叶数对烤烟K326碳代谢和品质的影响[J].西南大学学报(自然科学版), 2016, 38(9):20-25. doi: http://xbgjxt.swu.edu.cn/jsuns/jsuns/ch/reader/view_abstract.aspx?file_no=201609004&flag=1 [4] 王园春. 大豆根瘤菌共生基因的筛选以及三型分泌系统效应分子的鉴定[D]. 北京: 中国农业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10019-1015717653.htm [5] 蒲强, 谭志远, 彭桂香, 等.根瘤菌分类的新进展[J].微生物学通报, 2016, 43(3):619-633. doi: http://journals.im.ac.cn/wswxtbcn/ch/reader/create_pdf.aspx?file_no=tb16030619&year_id=2016&quarter_id=3&falg=1 [6] VANCE C P, EGLI M A, GRIFFITH S M, et al. Plant Regulated Aspects of Nodulation and N2 Fixation[J]. Plant Cell and Environment, 1988, 11(5):413-427. doi: 10.1111/pce.1988.11.issue-5 [7] SUGANUMA N, NAKAMURA Y, YAMAMOTO M, et al. The Lotus japonicus Sen1 Gene Controls Rhizobial Differentiation Into Nitrogen-Fixing Bacteroids in Nodules[J]. Molecular Genetics and Genomics, 2003, 269(3):312-320. doi: 10.1007/s00438-003-0840-4 [8] LEROUGE P, ROCHE P, FAUCHER C, et al. Symbiotic Host-Specificity of Rhizobium-Meliloti is Determined by a Sulfated and Acylated Glucosamine Oligosaccharide Signal[J]. Nature, 1990, 344(6268):781-784. doi: 10.1038/344781a0 [9] BORISOV A Y, MORZHINA E V, KULIKOVA O A, et al. New Symbiotic Mutants of Pea (Pisum-Sativum L) Affecting Either Nodule Initiation or Symbiosome Development[J]. Symbiosis, 1993, 14(1-3):297-313. [10] MORZHINA E V, TSYGANOV V E, BORISOV A Y, et al. Four Developmental Stages Identified by Genetic Dissection of Pea (Pisum sativum L.) Root Nodule Morphogenesis[J]. Plant Science, 2000, 155(1):75-83. doi: 10.1016/S0168-9452(00)00207-7 [11] SUGANUMA N, SONODA N, NAKANE C, et al. Bacteroids Isolated from Ineffective Nodules of Pisum sativum Mutant E135(sym13) Lack Nitrogenase Activity But Contain the Two Protein Components of Nitrogenase[J]. Plant and Cell Physiology, 1998, 39(10):1093-1098. doi: 10.1093/oxfordjournals.pcp.a029307 [12] STOUGAARD J. Regulators and Regulation of Legume Root Nodule Development[J]. Plant Physiology, 2000, 124(2):531-540. doi: 10.1104/pp.124.2.531 [13] MADSEN E B, MADSEN L H, RADUTOIU S, et al. A Receptor Kinase Gene of the LysM Type is Involved in Legume Perception of Rhizobial Signals[J]. Nature, 2003, 425(6958):637-640. doi: 10.1038/nature02045 [14] doi: https://www.researchgate.net/publication/285908743_Sym28_and_Sym29_two_new_genes_involved_in_regulation_of_nodulation_in_pea_Pisum_sativum_L SAGAN M, DUC G. Sym28 and Sym29, Two New Genes Involved in Regulation of Nodulation in Pea (Pisum sativum L)[J]. Symbiosis, 1996, 20(3):229-245. [15] OOKI Y, BANAB M, YANO K, et al. Characterization of the Lotus japonicus Symbiotic Mutant Lot1 That Shows a Reduced Nodule Number and Distorted Trichomes[J]. Plant Physiology, 2005, 137(4):1261-1271. doi: 10.1104/pp.104.056630 [16] IMAIZUMIANRAKU H, KOUCHI H, SYONO K, et al. Analysis of Enod40 Expression in Alb1, a Symbiotic Mutant of Lotus japonicus That Forms Empty Nodules with Incompletely Developed Nodule Vascular Bundles[J]. Molecular and General Genetics, 2000, 264(4):402-410. doi: 10.1007/s004380000330 [17] HOSSAIN M S, UMEHARA Y, KOUCHI H, et al. A Novel Fix-Symbiotic Mutant of Lotus Japonicus, Ljsym105, Shows Impaired Development and Premature Deterioration of Nodule Infected Cells and Symbiosomes[J]. Molecular Plant-Microbe Interactions, 2006, 19(7):780-788. doi: 10.1094/MPMI-19-0780 [18] 车成来, 金龙哲, 林花, 等.利用EMS筛选豆科模式植物百脉根的根瘤突变体及突变部位[J].延边大学农学学报, 2016, 38(3):235-241. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ybdxnxxb201603010 [19] BROUGHTON W J, DILWORTH M Y. Control of Leghaemoglobin Synthesis in Snake Beans[J]. Biochemical Journal, 1971, 125(4):1075-1080. doi: 10.1042/bj1251075 [20] ISHIKAWA K, YOKOTA K, LI Y Y, et al. Isolation of a Novel Root-Determined Hypernodulation Mutant Rdh1 of Lotus japonicus[J]. Soil Science and Plant Nutrition, 2008, 54(2):259-263. doi: 10.1111/j.1747-0765.2007.00240.x [21] TU J C. Rhizobial Root Nodules of Soybean as Revealed by Scanning and Transmission Electron Microscopy[J]. Phytopathology, 1975, 65(4):447-454. doi: 10.1094/Phyto-65-447 [22] IMAIZUMIANRAKU H, KAWAGUCHI M, KOIWA H, et al. Two Ineffective-Nodulating Mutants of Lotus japonicus-Different Phenotypes Caused by the Blockage of Endocytotic Bacterial Release and Nodule Maturation[J]. Plant Cell Physiology, 1997, 38(7):871-881. doi: 10.1093/oxfordjournals.pcp.a029246 [23] NOVÁK K, PEŠINA K, NEBESÁROVÁ J, et al. Symbiotic Tissue Degradation Pattern in the Ineffective Nodules of 3 Nodulation Mutants of Pea(Pisum-Sativum L)[J]. Annals of Botany, 1995, 76(3):303-313. doi: 10.1006/anbo.1995.1100 [24] BANBA M, SIDDIQUE A B, KOUCHI H, et al. Lotus japonicus forms Early Senescent Root Nodules with Rhizobium etli[J]. Molecular Plant-Microbe Interactions, 2001, 14(2):173-180. doi: 10.1094/MPMI.2001.14.2.173 [25] SCHAUSER L, HANDBERG K, SANDAL N, et al. Symbiotic Mutants Deficient in Nodule Establishment Identified After T-DNA Transformation of Lotus japonicus[J]. Molecular General Genetics, 1998, 259(4):414-423. doi: 10.1007/s004380050831 [26] KUMAGAI H, HAKOYAMA T, UMEHARA Y, et al. A Novel Ankyrin-Repeat Membrane Protein, IGN1, is Required for Persistence of Nitrogen-Fixing Symbiosis in Root Nodules of Lotus japonicus[J]. Plant Physiology, 2007, 143(3):1293-1305. doi: 10.1104/pp.106.095356 [27] KAWAGUCHI M, IMAIZUMI-ANRAKU H, KOIWA H, et al. Root, Root Hair, and Symbiaotic Mutants of the Model Legume Lotus japonicus[J]. Molecular Plant-Microbe Interactions, 2002, 15(1):17-26. doi: 10.1094/MPMI.2002.15.1.17 [28] SUGANUMA N, NAKAMURA Y, YAMAMOTO M, et al. The Lotus japonicus Sen1 Gene Controls Rhizobial Differentiation Into Nitrogen-Fixing Bacteroids in Nodules[J]. Molecular Genetics and Genomics, 2003, 269(3):312-320. doi: 10.1007/s00438-003-0840-4