FREUDENTHAL H. Teilweise Geordneten Moduln[J]. Proc Kon Ned Akad van Wetensch, 1936, 39:641-651.
|
LUXEMBERG W A J, ZAANEN A C. Riesz Spaces, I[M]. Amsterdam-London:North-Holland Publishing Company, 1971.
|
STEEN S W P. An Introduction to the Theory of Operators I[J]. Proc London Math Soc, 1936, 41(5):361-392.
|
LAVRIĈ B. On Freudenthal's Spectral Theorem[J]. Indagat Math, 1986, 89(4):411-421. doi: 10.1016/1385-7258(86)90026-0
|
WÓJTOWICZ M. On a Weak Freudenthal Spectral Theorem[J]. Comment Math Univ Carolin, 1992, 33(4):631-643.
|
TOUMI M A. A Simple Proof for a Theorem of Luxemburg and Zaanen[J]. J Math Anal Appl, 2006, 322(2):1231-1234. doi: 10.1016/j.jmaa.2005.10.044
|
LIPECKI Z. On Binary-Type Approximations in Vector Lattices[J]. Arch Math, 1994, 62(6):545-553. doi: 10.1007/BF01193743
|
罗俊丽, 乔希民, 吴洪博.区间集上非交换剩余格Fuzzy布尔滤子的特征性质[J].西南师范大学学报(自然科学版), 2016, 41(4):20-24.
|
DAI T Y. On Some Special Classes of Partially Ordered Linear Algebras[J]. J Math Anal Appl, 1972, 40(3):649-682. doi: 10.1016/0022-247X(72)90011-X
|
DAI T Y, DEMARR R. A Property for Inverses in a Partially Ordered Linear Algebra[J]. Trans Amer Math Soc, 1976, 215:285-292. doi: 10.1090/S0002-9947-1976-0382116-2
|
GELLAR R. 0 ≤ X2 ≤ X[J]. Trans Amer Math Soc, 1972, 173:341-352.
|
DEMARR R. On Partially Ordering Operator Algebras[J]. Canad J Math, 1967, 19(2):636-643.
|
杨明歌, 廖开方. Banach空间中非凸广义方程的度量次正则性[J].西南大学学报(自然科学版), 2015, 37(9):77-81.
|
BACHMAN G, NARICI L. Functional Analysis[M]. New York:Dover Publications, 2000.
|