-
从1984年,Karmarkar[1]提出内点算法以来,内点算法的研究一直是一个热门的课题.随着研究的不断深入,研究者提出了许多不同类型的内点算法.从初始点的选取不同可分为:可行内点算法和不可行内点算法.不可行内点算法的优势是:不要求初始点严格可行,仅要求在非负象限的内部.由于这种类型的点容易获得,故在实际计算中显得尤为重要.
Lustig[2]首次提出了不可行内点算法,随后Masakazu[3]提出了原始-对偶不可行内点算法.这些早期的著作均没有给出不可行内点算法的多项式复杂度,直到Zhang[4]给出了第一个具有多项式复杂度O(n2 L)的不可行算法,然而,这个算法的复杂度较高.为了降低复杂度,众多学者做了大量研究工作[5-10].目前,不可行内点算法的最低复杂度为O(nL),这一结果仅对窄邻域不可行内点算法成立,并且窄邻域不可行内点算法的一般复杂度为O(n1.5L).对宽邻域而言一般算法的复杂度为O(n2L),目前最低复杂度为O(n1.5L).
本文将给出一个复杂度为O(n1.5L)的宽邻域不可行内点算法,该算法迭代在Ai[11]等提出的宽邻域内.最后,通过数值试验说明该算法是有效的.
本文中:e表示分量全为1的列向量;‖·‖表示向量的2 -范数.对于向量x,s∈
$ {{\mathbb{R}}^\mathit{n}} $ ,xs∈$ {{\mathbb{R}}^\mathit{n}} $ 表示对应分量的乘,(xs)min表示xs∈$ {{\mathbb{R}}^\mathit{n}} $ 的最小分量;让$ \mathit{\boldsymbol{p}} = {\mathit{\boldsymbol{x}}^{ - \frac{1}{2}}}{\mathit{\boldsymbol{s}}^{\frac{1}{2}}}, \mathit{\boldsymbol{\tilde r}} = {\left( {\mathit{\boldsymbol{xs}}} \right)^{\frac{1}{2}}}\mathit{\boldsymbol{r}} $ ;另外,对于h∈$ {{\mathbb{R}}^\mathit{n}} $ ,我们记:h+=max{0,h}和h-=h-h+.
A Wide Neighborhood Infeasible-Interior-Point Method for Linear Programming
- Received Date: 28/08/2015
- Available Online: 20/01/2017
-
Key words:
- linear programming /
- infeasible-interior-point method /
- wide neighborhood /
- polynomial complexity
Abstract: In this paper, we propose a wide neighborhood infeasible-interior-point method for linear programming.The characteristics of the proposed algorithm are as follows:on the one hand, the proposed algorithm is based on a wide neighborhood and has a good calculation results, which is showed by the experiments.On the other hand, by analyzing, we achieve the iteration complexity O(n1.5L) for the proposed algorithm, which is the best complexity result for a wide neighborhood infeasible-interior-point method.