-
自1963年Lorenz[1]提出第一个三维自治混沌系统以来,大量三维混沌系统被构造[2-5],这些系统的研究也激发了人们对Lorenz类系统的探讨.由于平面自治系统不可能产生混沌,而在自治系统中出现混沌至少是三维,因此,在对混沌机理讨论过程中,三维二次自治系统的研究对揭示混沌的产生机理具有特别重要的意义.对于Lorenz类的系统,其混沌判定的定性准则主要是通过Shilnikov定理[6-7]来进行,且要求至少具有一个不稳定的双曲平衡点(鞍焦型),然而Shilnikov定理只是混沌产生的充分条件,而非必要条件,这样对于具有稳定平衡点甚至是没有平衡点或者有无穷多平衡点的系统,在远离平衡点处是否会产生混沌就成为一个新的课题,同时其系统的全局动力学行为等相关问题也会成为数学工作者和工程技术人员面临的一个重要挑战,而且,这些研究无论是对混沌理论或者是混沌应用都至关重要.近几年新的混沌系统不断被提出[5-15],然而这些系统几乎都是通过计算机数值仿真对系统的Lyapunov指数、分岔图、平衡点稳定性等进行分析,其全局动力学行为以及系统的各类分岔行为、周期行为等并没有得到深入的理论分析.为了定性研究此类系统的内部结构以及动力学行为,本文在给出一类具有隐藏吸引子的三维Jerk混沌系统
的基础上,首先通过数值仿真对其基本动力学进行分析,进而运用Poincare紧致化理论对系统(1) 的无穷远动力学进行分析,同时运用平均方法,采用扰动理论对系统(1) 的周期解进行定性分析,并运用数值仿真进行了验证.
Dynamics Analysis and Periodic Solution of a 3D Jerk System with Hidden Attractor
- Received Date: 16/09/2015
- Available Online: 20/01/2017
-
Key words:
- Jerk system /
- hidden attractor /
- periodic solution
Abstract: Basic dynamics such as period one attractor, period two attractor, chaotic attractor, Lyapunov exponent spectrum and bifurcation for a 3D Jerk system with hidden attractor were studied in this paper by using numerical methods. Also, by using the Poincare compactification of polynomial vector field inR3, the dynamics near infinite singularities were obtained. Furthermore, the local phase portraits of the infinite singularities were obtained by using aclinic line. Moreover, in accordance with the theory of average and perturbation of isochronous system, the analytic periodic solution of this system were analyzed and obtained. The simulation results demonstrate the correctness of the dynamics analysis and periodic solution computation and verified by Rong-Kutta method.