-
二次剩余码(简称QR码)是文献[1]提出的一类循环BCH码.由于这类码的码率都大于或等于1/2,所以大部分QR码都是比较好的纠错码.例如(24,12,8) QR码已被用于航海通信[2].
在过去的几十年里,关于QR码的译码方法已经提出很多种[3-9],但这些译码方法很多都采用了一些代数工具,需要比较复杂的有限域中的计算,从而延长了译码时间.为减少译码复杂性,查表译码就成为一个比较好的选择.查表译码需要预先存储由校验子和相应的错误模式构成的表.对于纠错能力为4的(41,21,9) QR码,它需要存储
$\sum _{i = 1}^4\left( \begin{array}{l} 41\\ i \end{array} \right) = 112\,791$ 个校验子和相应的错误模式,存储大小为112 791×(6bytes+3bytes)≈991.3 Kbytes.文献[4]经过改善,提出的算法需要存储101.26 Kbytes.事实上,考虑循环码的特性,只需存储$\sum _{i = 1}^4\left( \begin{array}{l} 41\\ i \end{array} \right)/41 = 2751$ 个校验子和相应的错误模式即可,此时存储大小仅为24.18 Kbytes[2].而文献[5]和文献[6]又进一步优化,分别将存储大小减少到2.47 Kbytes和2.03 Kbytes,大大节省了存储空间.本文继续沿用查表译码的思想,同时又利用校验子与校验矩阵之间的关系,提出了一种基于校验子重量的快速译码算法(fast syndrome-weight decoding algorithm,FSWDA).这个算法具有运算简单、存储量小的特点,而且可以用于其它纠错能力小于或等于4的QR码.
On Fast Decoding of (41, 21, 9) Quadratic Residue Code
- Received Date: 28/09/2015
- Available Online: 20/01/2017
-
Key words:
- quadratic residue code /
- table look-up decoding /
- error pattern /
- syndrome /
- hamming weight
Abstract: The binary QR codes are a family of linear cyclic BCH codes. In this paper, a fast syndrome-weight decoding algorithm (FSWDA) has been presented to decode up to four possible errors in a binary systematic (41, 21, 9) quadratic residue (QR) code. The main idea of FSWDA is based on the property of cyclic codes together with the weight of syndrome difference. The advantage of the FSWDA decoding algorithm over the previous table look-up methods is that it has no need of a look-up table to store the syndromes and their corresponding error patterns in the memory. Moreover, it can be extended to decode all four-error-correcting binary QR codes.