Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 42 Issue 8
Article Contents

Bo SONG, Xing-yan ZHANG, De-fu LI, et al. Comparison of Yield and Lodging Resistance of Shaanyou28 and Qinyou7 Grown in Different Density and Sowing Date[J]. Journal of Southwest University Natural Science Edition, 2020, 42(8): 66-73. doi: 10.13718/j.cnki.xdzk.2020.08.009
Citation: Bo SONG, Xing-yan ZHANG, De-fu LI, et al. Comparison of Yield and Lodging Resistance of Shaanyou28 and Qinyou7 Grown in Different Density and Sowing Date[J]. Journal of Southwest University Natural Science Edition, 2020, 42(8): 66-73. doi: 10.13718/j.cnki.xdzk.2020.08.009

Comparison of Yield and Lodging Resistance of Shaanyou28 and Qinyou7 Grown in Different Density and Sowing Date

More Information
  • Corresponding author: Jun-gang DONG
  • Received Date: 30/07/2019
    Available Online: 20/08/2020
  • MSC: S634.3

  • In order to explore the characteristics of mechanized rapeseed cultivars, Shaanyou28, the first cultivar suitable for mechanized cultivation in Shaanxi province, and Qinyou7, the main cultivar in Huang-Huai area, were compared in a field experiment in 2016. Four densities were set: 225 000 plants/ha (D1), 375 000 plants/ha (D2), 525 000 plants/ha (D3) and 675 000 plants/ha (D4), and two sowing dates: September 22 (M1) and October 1 (M2). The results showed that compared with that of Qinyou7, the growth of Shaanyou28 was characterized by a slow growth in the early periods and a fast growth in the later periods: 4 days later in bolting, 2 days later in initial flowering, 2-3 days earlier in full bloom stage and final bloom stages, and 2 days shorter in the whole growth duration. Under the same density and sowing date, plant height, branching height and length of main inflorescence of Shaanyou28 were smaller than those of Qinyou7, and the diameter of root crown, branch number and the density of siliques were larger than those of Qinyou7. The economic coefficient of Shaanyou28 and Qinyou7 decreased with the increase in density, and increased with the delay of sowing. Under the same density and sowing date, the economic coefficient of Shaanyou28 was higher than that of Qinyou7. As density increased, seed yield of Shaanyou28 first increased and then decreased, with the highest yield at D3, being 3 689.24 and 3 065.85 kg/ha at M1 and M2, respectively. Under the same sowing date and density, the root-shoot ratio of Shaanyou28 was higher than that of Qinyou; and the dry matter accumulation of Shaanyou28 was lower than that of Qinyou7 under D1 and D2, and higher than that of Qinyou7 under D3 and D4. As planting density increased, the lodging index of Shaanyou28 slightly increased, while that of Qinyou7 significantly increased. The lodging index decreased in both cultivars with delayed sowing. With the same sowing date and density, Shaanyou28 had a significantly smaller lodging index than Qinyou7. Shaanyou28 had more negative regulation factors for lodging index than Qinyou7. In conclusion, compared with Qinyou7, Shaanyou28 has shorter and more concentrated flowering period, fewer days to maturity, thinner silique layer, higher silique density, higher yield under high density condition, more dry matter distribution to the root system and stronger lodging resistance, thus making it more suitable for mechanized cultivation.
  • 加载中
  • [1] 王汉中, 殷艳.我国油料产业形势分析与发展对策建议[J].中国油料作物学报, 2014, 36(3): 414-421.

    Google Scholar

    [2] 吴崇友, 金诚谦, 肖体琼, 等.我国油菜全程机械化现状与技术影响因素分析[J].农机化研究, 2007, 29(12): 207-210. doi: 10.3969/j.issn.1003-188X.2007.12.064

    CrossRef Google Scholar

    [3] 金诚谦, 吴崇友, 石磊.油菜生产全程机械化技术体系关键技术研究[J].农机化研究, 2010, 32(5): 221-223. doi: 10.3969/j.issn.1003-188X.2010.05.062

    CrossRef Google Scholar

    [4] 关周博, 田建华, 郑磊, 等.适宜机械化栽培的甘蓝型油菜农艺性状与单株产量的相关性分析及耐密油菜育种探讨[J].中国农学通报, 2013, 29(18): 79-83. doi: 10.11924/j.issn.1000-6850.2013-0016

    CrossRef Google Scholar

    [5] 董晓芳, 田保明, 姚永芳, 等.密度对油菜品种机械化收获特性的影响[J].中国农学通报, 2012, 28(3): 71-74.

    Google Scholar

    [6] 宋稀, 刘凤兰, 郑普英, 等.高密度种植专用油菜重要农艺性状与产量的关系分析[J].中国农业科学, 2010, 43(9): 1800-1806. doi: 10.3864/j.issn.0578-1752.2010.09.005

    CrossRef Google Scholar

    [7] LEACH J E, STEVENSON H J, RAINBOW A J, et al. Effects of High Plant Populations on the Growth and Yield of Winter Oilseed Rape (Brassica Napus)[J]. The Journal of Agricultural Science, 1999, 132(2): 173-180.

    Google Scholar

    [8] MOMOH E J J, ZHOU W. Growth and Yield Responses to Plant Density and Stage of Transplanting in Winter Oilseed Rape (Brassica napus L.)[J]. Journal of Agronomy and Crop Science, 2001, 186(4): 253-259. doi: 10.1046/j.1439-037x.2001.00476.x

    CrossRef Google Scholar

    [9] 陈新军, 戚存扣, 浦惠明, 等.甘蓝型油菜抗倒性评价及抗倒性与株型结构的关系[J].中国油料作物学报, 2007, 29(1): 54-57, 62. doi: 10.3321/j.issn:1007-9084.2007.01.011

    CrossRef Google Scholar

    [10] 孙盈盈.不同栽培措施对油菜产量及抗倒性的影响[D].武汉: 华中农业大学, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10504-1016151354.htm

    Google Scholar

    [11] 唐启义, 冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社, 2002: 221-232.

    Google Scholar

    [12] 罗泽青, 吴畏, 肖晓华, 等.油菜菌核病流行预测模型研究[J].西南师范大学学报(自然科学版), 2016, 41(3): 81-84.

    Google Scholar

    [13] 傅廷栋.油菜生产品种改良与机械化[J].农业装备技术, 2010, 36(2): 22-25. doi: 10.3969/j.issn.1671-6337.2010.02.014

    CrossRef Google Scholar

    [14] 袁金展, 马霓, 张春雷, 等.移栽与直播对油菜根系建成及籽粒产量的影响[J].中国油料作物学报, 2014, 36(2): 189-197.

    Google Scholar

    [15] 薛远超, 李加纳, 刘列钊, 等.甘蓝型油菜EMS诱变材料的耐湿性鉴定与筛选[J].西南师范大学学报(自然科学版), 2012, 37(4): 76-80. doi: 10.3969/j.issn.1000-5471.2012.04.018

    CrossRef Google Scholar

    [16] 高必军, 李平, 江洪.甘蓝型油菜若干农艺性状与单株产量的关系分析[J].生物数学学报, 2007, 22(1): 137-144. doi: 10.3969/j.issn.1001-9626.2007.01.019

    CrossRef Google Scholar

    [17] 田效琴, 李卓, 刘永红.施氮量和播种密度对不同熟期油菜干物质量和产量的影响[J].核农学报, 2019, 33(4): 798-807.

    Google Scholar

    [18] 任永峰, 梅丽, 杨亚东, 等.播期对藜麦农艺性状及产量的影响[J].中国生态农业学报, 2018, 26(5): 643-656.

    Google Scholar

    [19] 陈秀芳.油菜播期、蹲苗与倒伏[J].湖北农业科学, 1984, 23(8): 12-15.

    Google Scholar

    [20] 张建, 陈金城, 唐章林, 等.油菜茎秆理化性质与倒伏关系的研究[J].西南农业大学学报(自然科学版), 2006, 28(5): 763-765. doi: 10.3969/j.issn.1673-9868.2006.05.016

    CrossRef Google Scholar

    [21] 官春云, 陈社员, 吴明亮.南方双季稻区冬油菜早熟品种选育和机械栽培研究进展[J].中国工程科学, 2010, 12(2): 4-10. doi: 10.3969/j.issn.1009-1742.2010.02.001

    CrossRef Google Scholar

    [22] 王俊生, 田建华, 张继澍, 等.紧凑型油菜株型性状的遗传及其与主要产量性状的相关性研究[J].西北农林科技大学学报(自然科学版), 2005, 33(6): 7-12. doi: 10.3321/j.issn:1671-9387.2005.06.002

    CrossRef Google Scholar

    [23] 李小勇, 周敏, 王涛, 等.种植密度对油菜机械收获关键性状的影响[J].作物学报, 2018, 44(2): 278-287.

    Google Scholar

    [24] 胡新洲, 杨进成, 适秀安, 等.不同播期、密度和施肥量对山地油菜农艺性状和产量的影响[J].广东农业科学, 2018, 45(10): 17-22.

    Google Scholar

    [25] 田保明, 袁志华, 王建平.油菜茎秆抗倒伏的力学分析及综合评价探讨[J].河南农业科学, 2005, 34(3): 30-32. doi: 10.3969/j.issn.1004-3268.2005.03.007

    CrossRef Google Scholar

    [26] 刘唐兴, 官春云, 雷冬阳, 等.播种密度对油菜倒伏指数的影响及品种抗倒性比较[J].江西农业学报, 2008, 20(2): 1-3. doi: 10.3969/j.issn.1001-8581.2008.02.001

    CrossRef Google Scholar

    [27] 李尧臣, 顾慧, 戚存扣.抗倒伏甘蓝型油菜(Brassica napus L.)根和茎解剖学结构分析[J].江苏农业学报, 2011, 27(1): 36-44. doi: 10.3969/j.issn.1000-4440.2011.01.007

    CrossRef Google Scholar

    [28] 孙盈盈, 刘婷婷, 杨海燕, 等.油菜茎秆特性与抗倒性及产量的关联研究[J].湖北农业科学, 2014, 53(20): 4796-4801.

    Google Scholar

    [29] 彭旭辉.甘蓝型油菜抗倒伏指标的选取及其QTL定位[D].重庆: 西南大学, 2012.http://d.wanfangdata.com.cn/Thesis/Y2087264

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  /  Tables(5)

Article Metrics

Article views(3204) PDF downloads(261) Cited by(0)

Access History

Other Articles By Authors

Comparison of Yield and Lodging Resistance of Shaanyou28 and Qinyou7 Grown in Different Density and Sowing Date

    Corresponding author: Jun-gang DONG

Abstract: In order to explore the characteristics of mechanized rapeseed cultivars, Shaanyou28, the first cultivar suitable for mechanized cultivation in Shaanxi province, and Qinyou7, the main cultivar in Huang-Huai area, were compared in a field experiment in 2016. Four densities were set: 225 000 plants/ha (D1), 375 000 plants/ha (D2), 525 000 plants/ha (D3) and 675 000 plants/ha (D4), and two sowing dates: September 22 (M1) and October 1 (M2). The results showed that compared with that of Qinyou7, the growth of Shaanyou28 was characterized by a slow growth in the early periods and a fast growth in the later periods: 4 days later in bolting, 2 days later in initial flowering, 2-3 days earlier in full bloom stage and final bloom stages, and 2 days shorter in the whole growth duration. Under the same density and sowing date, plant height, branching height and length of main inflorescence of Shaanyou28 were smaller than those of Qinyou7, and the diameter of root crown, branch number and the density of siliques were larger than those of Qinyou7. The economic coefficient of Shaanyou28 and Qinyou7 decreased with the increase in density, and increased with the delay of sowing. Under the same density and sowing date, the economic coefficient of Shaanyou28 was higher than that of Qinyou7. As density increased, seed yield of Shaanyou28 first increased and then decreased, with the highest yield at D3, being 3 689.24 and 3 065.85 kg/ha at M1 and M2, respectively. Under the same sowing date and density, the root-shoot ratio of Shaanyou28 was higher than that of Qinyou; and the dry matter accumulation of Shaanyou28 was lower than that of Qinyou7 under D1 and D2, and higher than that of Qinyou7 under D3 and D4. As planting density increased, the lodging index of Shaanyou28 slightly increased, while that of Qinyou7 significantly increased. The lodging index decreased in both cultivars with delayed sowing. With the same sowing date and density, Shaanyou28 had a significantly smaller lodging index than Qinyou7. Shaanyou28 had more negative regulation factors for lodging index than Qinyou7. In conclusion, compared with Qinyou7, Shaanyou28 has shorter and more concentrated flowering period, fewer days to maturity, thinner silique layer, higher silique density, higher yield under high density condition, more dry matter distribution to the root system and stronger lodging resistance, thus making it more suitable for mechanized cultivation.

  • 中国是世界上油菜种植面积最大的国家之一,但是由于起步晚、基础薄弱等因素,我国油菜栽培水平和模式与加拿大等发达国家还有一定差距[1].其中,机械化程度低是目前限制油菜种植产业发展的关键性因素[2],机械化栽培模式要求油菜能在高密度条件下依然能够保持良好的产量和抗倒性,并尽可能具备适合机械化栽培的农艺性状[3].

    在一定栽培条件下实现油菜生长发育与群体性状的相互协调对产量贡献最大.在高密度种植条件下,具有苗期生长缓慢、早花不早薹、灌浆快、成熟期早和花期集中、主茎与分枝角果成熟相对一致等特点的品种适合机械化作业[4].花期相对集中,可缩短油菜上下部角果成熟时间上差异,油菜茎秆变细、有效分枝的上移集中、株型更加紧凑等特点有利于机械化收割[5].机械化高密度种植下的油菜品种,结角密度和主花序有效角果对于产量贡献最大,特别是结角密度,对于产量的相关系数和直接作用都是最大[6].甘蓝型冬油菜在高密度条件下,产量降低、有效分枝数减少、单株角果数下降、单株干物质减少,千粒质量增加,产量随密度先增加再减少[7].随着植株密度的增加和移栽时间的延长,有效分枝数和单株有效角果数呈下降趋势,但最高产量是在相对高密度的种植条件下实现的[8].同时株高适中、分枝数适中、角果分布均匀、株型为紧凑型的品种较抗倒伏[9].本试验对西北农林科技大学最新选育的机械化种植的油菜品种陕油28和秦优7号在不同密度与播期条件下进行生育进程、农艺性状、产量、干物质积累量和抗倒性等的比较,以期比较二者的异同,为油菜机械化品种的选育提供参考.

1.   材料与方法
  • 试验地位于西北农林科技大学油菜试验基地(北纬34.30°、东经108.06°),前茬作物为小麦.土壤为塿土,含有机质1.76%、全氮0.11%、全磷0.13%、速效磷23.50 mg/kg、速效钾236.72 mg/kg.

  • 采用裂区试验设计,设置3个因素,分别为品种、播期、密度.播期为主区,采用2016年9月22日(M1)和2016年10月1日(M2)两个播期;密度和品种双因素为裂区,采用22.5万株/hm2(D1)、37.5万株/hm2(D2)、52.5万株/hm2(D3)、67.5万株/hm2(D4)共计4个密度,陕油28和秦优7号2个品种,共16个处理组合.直播方式播种,三叶期至五叶期定苗,2017年5月28日至2017年5月31日收获,副区面积6 m2(3 m×2 m),设3个重复.

  • 采用国家油菜区域试验记载标准观察记录不同处理的生育时期.地上鲜质量为植株子叶节以上部分鲜质量,根鲜质量为子叶节以下部分鲜质量.将根系及地上部置108 ℃杀青30 min,80 ℃烘干至恒质量后,测定干物质量并计算根冠比.

  • 成熟期从各小区连续取样10株,考察株高、根颈粗细、分枝部位高低、分枝数等农艺性状,并考察单株有效角果数、千粒质量、每角粒数等产量性状.人工分小区收获,晾晒6 d后脱粒、扬净、晒干、称质量.

  • 参照孙盈盈[10]的方法进行.于成熟期取10株油菜,量取第一次有效分枝部位高度,除去缩颈段后,将其平均分为4段,以YDD-1型茎秆强度测量仪(浙江托普仪器有限公司生产)分别测定每一段的抗折力,计算倒伏指数;倒伏指数(cm·g/g)=承载高度(cm)×鲜质量(g)/抗折力(g),承载高度与鲜质量为测定茎段至植株顶部对应高度与鲜质量,抗折力为该段中间抗折力.

  • 采用DPS8.01[11]统计软件进行数据统计和方差分析,以最小显著法(least significant difference,LSD)检验显著性,显著性水平均为0.05,用Origin 9.0软件作图.

2.   结果
  • 表 1可知,通过对陕油28和秦优7号的全生育期调查表明:相同播期下,种植密度增加,陕油28和秦优7号生育期提前,全生育期缩短;相同密度下,播期延后,生育期进程延后,全生育期缩短. M1播期时,陕油28平均进入抽薹期比秦优7号晚4 d,晚2 d进入初花期,提早2 d进入盛花期,提早3 d进入终花期,平均生育期长度比秦优7号短2 d. M2播期相比于M1播期,两个品种生育进程都延后,生育期缩短,生育期进程和生育期长度差异无明显变化.

  • 表 2可知,在相同播期下,种植密度增加,陕油28和秦优7号的株高、根茎粗、主花序、分枝数减少,D1达到最大值,分枝部位高度增大,D1处为最小值,结角密度先增加再减小,D2处有最大值.相同密度下,播期延后,株高、根茎粗、主花序长、分枝数、结角密度减小,分枝部位高度增加,品种间变化趋势一致.相同播期和密度下,陕油28的株高、分枝部位高度和主花序长小于秦优7号,根茎粗、分枝数、结角密度大于秦优7号.方差分析显示,播期、品种、密度对农艺性状的影响达到极显著水平,播期与品种的互作效应对株高、根茎粗、结角密度的影响达到显著水平,其他互作效应对于农艺性状影响不显著.

  • 表 3可知,相同播期,种植密度增加,单株有效角果数、每角粒数、经济系数减少,千粒质量先增大后减小,品种间无差异;陕油28产量先增大后减小,在D3密度处达到最大,秦优7号产量一直减少,在D1密度处有最大产量.播期延后,单株角果数、每角粒数、千粒质量、产量都减小,经济系数增大.相同密度与播期下,D1密度,陕油28产量小于秦优7号,D2、D3、D4密度,陕油28产量高于秦优7号.方差分析显示,播期和品种对产量、产量构成因素与经济系数影响达到显著水平,密度对单株角果数、每角粒数、产量的影响达到显著水平,播期与品种、品种与密度互作效应对产量影响达到显著水平,其他互作效应影响不显著.

  • 表 4可知,陕油28与秦优7号干物质积累量都依次为成熟期、花期、蕾薹期、苗期.相同播期,种植密度增加,干物质减少,品种和生育期之间无差异;陕油28根冠比先增大后减少,秦优7号根冠比减少.相同密度,播期延后,干物质和根冠比减少,品种与生育期之间无明显差异.相同播期,D1、D2密度下陕油28干物质累计量少于秦优7号,D3、D4密度下多于秦优7号,相同播期和密度,陕油28根冠比大于秦优7号.

  • 图 1可知,相同播期下,密度增大,陕油28的倒伏指数增大,但增大幅度不显著,秦优7号倒伏指数随着密度增加有显著的增大.相同密度下,播期延后,两个品种倒伏指数都降低.相同播期和密度,陕油28的倒伏指数小于秦优7号.由表 5可知,农艺性状与倒伏指数的相关性结果显示,根茎粗、主花序长、分枝数、单株角果数和结角密度对陕油28倒伏指数有显著或极显著负效应,分枝高度有极显著正效应,主花序长和分枝数对秦优7号倒伏指数有显著负效应.

3.   讨论
  • 水旱轮作为主的长江流域是我国油菜生产的优势区域,也是我国油料生产最具发展潜力的地区,其发展瓶颈在于缺乏生育期短的早熟油菜品种和配套生产技术[12].在“双低+杂优”的基础上,适合机械化、轻简化栽培的品种,应是近期油菜育种的重要目标[13].油菜产量由单株有效角果数、每角粒数、千粒质量构成,根干质量也是决定油菜群体籽粒产量的主要因素,根干质量越大,籽粒产量越高;粗壮的根系是油菜获得高产的关键[14],其他农艺性状也会作用于产量,形成由多重因素调控的复杂关系[15],机械化品种主要是通过结角密度和单株角果数的提升增加产量[16].同时,对于直播油菜而言,密度和播期也是调控产量的关键条件和因素[17-20].油菜的成熟度直接关系到机械化联合收获的作业质量,所以早熟品种也是油菜机械收割所必须的[21].油菜机械化收获损失率的高低和油菜植株高矮成正相关,因此机械化收获要求油菜品种具有半矮秆性状,减少机械损失率[22].适合油菜机械化收割的种植方式为高密度条件下直播,选择油菜花期相对集中、结角层厚度适中、早熟耐高密度的品种,并且缩短油菜上下部角果成熟时间上差异,有利于机械化栽培模式[23-24].机械化收获要求油菜抗倒性好,倒伏影响机收效率,使上下层油菜成熟不一致,增加油菜机收损失率.油菜株高过高,重心增加,容易发生倒伏[25],油菜抗倒性随着种植密度提升而下降[26-27],随着种植密度提升,油菜倒伏角度和倒伏指数都逐渐下降,不同品种的下降幅度不相同[28],较矮的油菜品种抗倒伏能力较强[29].

    本研究表明:种植密度增加,陕油28产量总体上呈先升高后下降趋势,高密度下产量更大,秦优7号产量呈下降趋势,低密度下产量更大,所以陕油28更适宜在高密度条件下种植,秦优7号更适宜在低密度条件下种植.相同条件下,相比于秦优7号,陕油28的生育期具有开花晚、盛花早、花期终花早、花期短且集中、生育期短、生育进程表现前慢后快等特点.陕油28的株高、主花序长度、分枝部位高度小于秦优7号,根茎粗、分枝数、结角密度大于秦优7号,这些特点使陕油28相比秦优7号更适合机械化栽培.低密度条件下,秦优7号干物质含量大于陕油28,高密度条件下,陕油28干物质含量大于秦优7号.相同播期和密度条件下,陕油28根冠比大于秦优7号,表明陕油28在根系发育更充分.密度增加,陕油28和秦优7号的倒伏指数增加;播期延后,倒伏指数都降低.相同密度和播期下,陕油28的倒伏指数小于秦优7号,倒伏指数能反映作物抗倒伏能力的强弱,说明陕油28的抗倒伏能力显著强于秦优7号.根茎粗、主花序长、分枝数、单株角果数和结角密度对陕油28倒伏指数的负效应显著,分枝部位高度对陕油28倒伏指数有正效应,主花序长度和分枝数对秦优7号倒伏指数有负效应.相比秦优7号,对陕油28倒伏指数有负效应的农艺性状更多,这也与陕油28的倒伏指数小于秦优7号,抗倒伏能力强于秦优7号相符合.

4.   结论
  • 陕油28相比于秦优7号,突出农艺性状特点是花期短且集中、生育期短、株高较低、分枝部位高度较低、主花序长度较小、根茎粗大、结角密度大、分枝数多、根冠比大.密度增加,陕油28产量先增加再减小,在52.5万株/hm2达到最大产量,并且在高密度条件下,干物质含量稳定和抗倒伏性突出.根据生育期特点和不同密度与播期下的农艺性状、抗倒伏能力、干物质含量、产量指标判断,秦优7号适宜在低密度条件下栽培,陕油28适宜在高密度机械化条件下栽培.

Figure (1)  Table (5) Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return