-
城市是一个不断发展的有机体,应呈现出不同功能有机结合的形态,具体应包括商业区、工业区、居住区以及混合功能区等不同单元[1].当前,我国处于城市化快速发展的转型阶段,已从面向经济增长的增量规划时期转型至面向品质提升的存量规划时期.为了实时精准地把握城市空间结构、城市功能现状,进而制定有效的调整政策,作出资源分配等方面的科学决策,规划师和研究人员需对城市具体功能分区进行识别与评价.以往的城市功能区识别方法主要以实地调查统计与遥感影像识别为主,前者为定性方法,主观性较大,后者则存在数据研究成本较高且时效性不佳的问题[2].
近年来,大数据的研究飞速发展,为相关规划研究与应用提供了新的思路[3].兴趣点(Point of Interest,POI)作为新兴大数据之一,分布覆盖性广、数据量大、获取方式简单成为其独特的优势. POI数据主要描述了一些与城市生活相关的空间实体(医院、学校、商场等)与其属性信息(名称、坐标、地址等)[4].国内众多学者利用POI数据对城市空间结构[5-7]、设施布局[8-9]、生活便利度[10]以及商业空间[11-12]等领域开展理论与实证研究.同时,部分学者也已将POI应用于城市功能识别评价的研究工作中:韩昊英等[13]利用公交刷卡数据与POI数据从住区尺度对城市功能区进行识别汇总;池娇等[14]则通过POI重分类,以颜色叠加法识别分析了武汉市单一功能区与混合功能区;李苗裔等[15]使用信息熵模型,计算出北京市POI数据与出租车数据的时空熵,从而识别出北京城市功能混合度.上述研究在功能区及其混合度的识别中,对POI数据本身的属性挖掘不够详尽,未提出详细的POI空间权重计算模型,同时在研究单元的划分上,未达到精细化的网格尺度.
当今的城市发展已舍弃城市无序蔓延以及“摊大饼”模式的增量扩张方式,并逐渐走向节约集约、智慧高效的发展模式,继而呈现出大量的混合功能区,因此对城市功能分区识别提出了更加精细化尺度的要求.鉴于此,本研究采用百度POI数据,提出一种量化POI数据属性的方法,试图定量计算城市功能分区,并在小网格尺度下,对功能混合度进行识别评价,研究结果有助于把握城市空间结构,为规划研究提供新的思路与借鉴.
A POI Data-Based Study ofthe Urban Functional Areas of Chongqing and Their Mix Degree Recognition
- Received Date: 26/06/2019
- Available Online: 20/01/2021
-
Key words:
- POI data /
- urban functional area /
- functional mixture degree /
- Chongqing
Abstract: Based on the theory of urban zoning and POI (point of interest)data, this paper takes the core urban area of Chongqing as an example, and based on the screening and classification of POI data, a "space-influence" binary weight calculation model is constructed to quantify POI attributes. Combined with the street partition, the main functions of each block are identified, and the functional mixture is calculated at the refined grid scale. The resultsindicate that the overall function of the central urban area is highly mixed, and the functional partition recognition is characterized by multi-center, and the urban group development mode is relatively mature; thatthe spatial distribution of functional areas of POIs with different functions is obviously different, and the functions of commercial service, residence and public service are characterized by group distribution and circle enclosing, while the industrial functions are mainly distributedaround the central urban area, and the traffic and green space functions are mainly distributed in stations and large parks; and thatthe function recognition based on POI is significant, and the blending measure of refined grid has certain reference value for land use description of mountainous cities.