Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 3
Article Contents

WEN Hui-min, FENG De-cheng, YANG Ya-nan. A Class of Maximax (Minimax) Inequalities for Two-Parameter Demi(sub)martingales[J]. Journal of Southwest University Natural Science Edition, 2021, 43(3): 95-100. doi: 10.13718/j.cnki.xdzk.2021.03.014
Citation: WEN Hui-min, FENG De-cheng, YANG Ya-nan. A Class of Maximax (Minimax) Inequalities for Two-Parameter Demi(sub)martingales[J]. Journal of Southwest University Natural Science Edition, 2021, 43(3): 95-100. doi: 10.13718/j.cnki.xdzk.2021.03.014

A Class of Maximax (Minimax) Inequalities for Two-Parameter Demi(sub)martingales

More Information
  • Received Date: 06/01/2019
    Available Online: 20/03/2021
  • MSC: O211.4

  • In this paper, a class of maximax inequalities for one-parameter demi(sub)martingales are extended to two-parameter demi(sub)martingales, and a class of maximax inequalities for two-parameter demi(sub)martingales are obtained. In addition, let a non-negative convex function act on the demimartingale, and a maximax inequality for two-parameter demi(sub)martingales is obtained.
  • 加载中
  • [1] CHRISTOFIDES T, HADJIKYRIAKOU M. Maximal Inequalities for Multidimensionally Indexed Demimartingales and the Hájek-rényi Inequality for Associated Random Variables [J]. Australian Journal of Mathematical Analysis and Applications, 2011, 7(2): 1-9.

    Google Scholar

    [2] WANG J F. Maximal Inequalities for Associated Random Variables and Demimartingales [J]. Statistics & Probability Letters, 2004, 66(3): 347-354.

    Google Scholar

    [3] AMIRDJANOVA A, LINN M. Stochastic Evolution Equations for Nonlinear Filtering of Random Fields in the Presence of Fractional Brownian Sheet Observation Noise [J]. Computers & Mathematics With Applications, 2008, 55(8): 1766-1784.

    Google Scholar

    [4] CAIROLI R, WALSH J. Stochastic Integrals in the Plane [J]. Acta Mathematica, 1975, 134: 111-183. doi: 10.1007/BF02392100

    CrossRef Google Scholar

    [5] NEWMAN C M, WRIGHT A. Associated Random Variables and Martingale Inequalities [J]. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 1982, 59(3): 361-371. doi: 10.1007/BF00532227

    CrossRef Google Scholar

    [6] DAI P P, SHEN Y, HU S H. Some Results for Demimartingales and N-demimartingales [J]. Journal of Inequalities and Applications, 2014(1): 1-12. doi: 10.1186/1029-242X-2014-489

    CrossRef Google Scholar

    [7] CHRISTOFIDES T C, HADJIKYRIAKOU M. Conditional Demimartingales and Related Results [J]. Journal of Mathematical Analysis and Applications, 2013, 398(1): 380-391. doi: 10.1016/j.jmaa.2012.09.004

    CrossRef Google Scholar

    [8] WANG X H, HU S H. On the Maximal Inequalities for Conditional Demimartingales [J]. Journal of Mathematical Inequalities, 2014, 8(3): 545-558.

    Google Scholar

    [9] WANG X J, HU S H. Maximal Inequalities for Demimartingales and Their Applications [J]. Science in China Series A: Mathematics, 2009, 52(10): 2207-2217. doi: 10.1007/s11425-009-0067-x

    CrossRef Google Scholar

    [10] CHRISTOFIDES T C. Maximal Inequalities for Demimartingales and a Strong Law of Large Numbers [J]. Statistics & Probability Letters, 2000, 50(4): 357-363.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(583) PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

A Class of Maximax (Minimax) Inequalities for Two-Parameter Demi(sub)martingales

Abstract: In this paper, a class of maximax inequalities for one-parameter demi(sub)martingales are extended to two-parameter demi(sub)martingales, and a class of maximax inequalities for two-parameter demi(sub)martingales are obtained. In addition, let a non-negative convex function act on the demimartingale, and a maximax inequality for two-parameter demi(sub)martingales is obtained.

  • $n, m \in \mathbb{N}^{2} $n=(n1n2),m=(m1m2). 如果nimii=1,2,则称nm,如果nimii=1,2中至少有一个严格小于成立,则称nm.

    在本文中,用$\left\{X_{n}, n \in \mathbb{N}^{2}\right\} $$\left\{Y_{n}, n \in \mathbb{N}^{2}\right\} $表示定义在概率空间$ (\Omega, \mathscr{A}, P)$上的双参数随机变量序列. 记X+= max{0,X},I(A)表示集合A的示性函数.

    定义1[1]  设$\left\{X_{n}, n \in \mathbb{N}^{2}\right\} $是一列Ld双参数随机变量,如果对所有的$i, j \in \mathbb{N}^{2}, i \leqslant j $,都有

    其中f是任意分量不减函数并且使上述期望有意义,则称$ \left\{X_{n}, n \in \mathbb{N}^{2}\right\}$是一个双参数弱鞅,如果进一步假设f是非负的,那么称$ \left\{X_{n}, n \in \mathbb{N}^{2}\right\}$是双参数弱下鞅.

    近年来,一些学者将单参数弱鞅序列的若干结果推广到了多指标弱(下)鞅的情形,并且给出了多参数弱(下)鞅的一些概率不等式[1-2]. 很多学者对双参数鞅的概率不等式及相关应用做了广泛研究,并取得了丰硕的成果[3-7].

    本文受文献[1]的启发. 一方面,将文献[3]中单参数弱下鞅的一类极大值不等式推广到双参数弱下鞅的情形,得到了双参数弱下鞅的极大值不等式,另一方面用非负凸函数作用于弱鞅,得到了双参数弱鞅的极大值不等式.

    引理1  设$ \left\{Y_{n}, n \in \mathbb{N}^{2}\right\}$是一个双参数弱(下)鞅,且g是一个不减的凸函数,g(Yn)∈L1n≥1,则$ \left\{g\left(Y_{n}\right), n \in \mathbb{N}^{2}\right\}$是一个双参数弱下鞅.

      由于g(x)是不减凸函数,令

    h(x)是非负不减函数. 假定f(x)是任意分量不减的非负函数,则

    这里f*(Ykki)=h(Yi)f(g(Ykki)),且f*是一个任意分量不减的非负函数. 由于$\left\{Y_{n}, n \in \mathbb{N}^{2}\right\} $是一个双参数弱(下)鞅,则

    所以$ \left\{g\left(Y_{n}\right), n \in \mathbb{N}^{2}\right\}$是一个双参数弱下鞅.

    定理1  设$\left\{Y_{n}, n \in \mathbb{N}^{2}\right\} $是一个双参数弱下鞅,且当k1k2=0时Yk=0,这里k=(k1k2). 假定$\left\{c_{n}, n \in \mathbb{N}^{2}\right\} $是正的不减数列,则对任意的ε>0,有

      设$A=\left\{\underset{(i, j) \leqslant\left(n_{1}, n_{2}\right)}{\max } c_{i j} Y_{i j} \geqslant \varepsilon\right\} $A1j={c1jY1jε},Aij={crjYrjε,1≤ricijYijε},2≤in1,1≤jn2,则$A=\underset{(i, j) \leqslant\left(n_{1}, n_{2}\right)}{\cup} A_{i j} $.

    这里$A_{1 j} \cap A_{2 j}=\varnothing, \boldsymbol{I}_{A_{2 j}}=\boldsymbol{I}_{A_{1 j} \cup A_{2 j}}-\boldsymbol{I}_{A_{1 j}} $.

    $g(x)=x^{+}, h(y)=\lim \limits_{x \rightarrow y^{-}}\left(x^{+}-y^{+}\right) /(x-y) $,则g(y)-g(x)≥ h(x)(y-x),gh是非负不减函数,同时由双参数弱下鞅的性质可得

    所以

    这里$A_{1 j} \cap A_{2 j} \cap A_{3 j}=\varnothing, \boldsymbol{I}_{A_{3 j}}=\boldsymbol{I}_{A_{1 j} \cup A_{2 j} \cup A_{3 j}}-\boldsymbol{I}_{A_{1 j} \cup A_{2 j}} $. 由于g是一个凸函数,$ \left\{Y_{n}, n \in \mathbb{N}^{2}\right\}$是一个双参数弱下鞅,所以有

    这里$h\left(Y_{2 j}\right) \boldsymbol{I}_{A_{1 j} \cup A_{2 j}} $是一个关于{Y1jY2j}分量不减的非负函数. 那么有

    重复上述证明过程可得

    同样地,$ h\left(Y_{2 j}\right) \boldsymbol{I}_{A_{1 j} \cup A_{2 j} \cup \cdots \cup A_{n_{1}-1, j}}$是关于{Y1jY2j,…,Yn1-1,j}分量不减的非负函数,再次利用双参数弱下鞅的性质可得

    所以

    同理可得

    综合(1),(2)式结论得证.

    推论1  设$\left\{Y_{n}, n \in \mathbb{N}^{2}\right\} $是一个双参数弱下鞅,g是一个不减凸函数,$ g\left(Y_{n}\right) \in L^{1}, n \in \mathbb{N}^{2}$,且当k1k2=0时Yk=0,这里k=(k1k2). 假定$\left\{c_{n}, n \in \mathbb{N}^{2}\right\} $是正的不减数列,则对任意的ε>0,有

      由引理1可知$\left\{g\left(Y_{n}\right), n \in \mathbb{N}^{2}\right\} $是一个双参数弱下鞅,再直接利用定理1可知结论成立.

    若在定理1中取cij≡1,则有下面的推论.

    推论2  设{Ynn≥1}是一个双参数弱(下)鞅,且当k1k2=0时Yk=0,这里k=(k1k2). 则对任意的ε>0,有

    定理2  设$\left\{Y_{n}, n \in \mathbb{N}^{2}\right\} $是一个双参数弱鞅,g是一个非负凸函数,$ g\left(Y_{n}\right) \in L^{1}, n \in \mathbb{N}^{2}$,且当k1k2=0时g(Yk)=0. 假定$\left\{c_{n}, n \in \mathbb{N}^{2}\right\} $是正的不减数列,则对任意的ε>0,有

      令u(x)=g(x)I(x≥0),v(x)=g(x)I(x<0),则u(x)是一个非负不减凸函数,v(x)是一个非负不增凸函数,且g(x)=u(x)+v(x)=max(u(x),v(x)),则

    由推论1可知

    $ A = \left\{ {\mathop {\max }\limits_{(i, j) \le {{\left( {{n_1}, {n_2}} \right)}^2}} {c_{ij}}v\left( {{Y_{ij}}} \right) \ge \varepsilon } \right\}$A1j={c1jv(Y1j)≥ε}, Aij={crjv(Yrj)<ε,1≤ricijv(Yij)≥ε},2≤in1,1≤jn2,则$A = \mathop \cup \limits_{(i, j) \le \left( {{n_1}, {n_2}} \right)} {A_{ij}} $,且当ij时,${A_{1j}} \cap {A_{2j}} = \varnothing $. 因此有

    这里$\boldsymbol{I}_{A_{2 j}}=\boldsymbol{I}_{A_{1 j} \cup_{A_{2 j}}}-\boldsymbol{I}_{A_{1 j}}$.

    由于v(x)是凸函数,令

    v(x)-v(y)≥(x-y)h(x),故

    再由双参数弱鞅的性质可得

    此处h是非正不减函数,IA1j是分量不增的非负函数,所以h(Y1j)IA1j是关于Y1j的分量不减函数. 因此有

    这里$A_{1 j} \cap A_{2 j} \cap A_{3 j}=\varnothing, \boldsymbol{I}_{A_{3 j}}=\boldsymbol{I}_{A_{1 j} \cup A_{2 j} \cup A_{3 j}}-\boldsymbol{I}_{A_{1 j}} \cup_{A_{2 j}} $,且g是一个凸函数,$ \left\{Y_{n}, n \in \mathbb{N}^{2}\right\}$是一个双参数弱鞅,因此有

    这里$h\left(Y_{2 j}\right) \boldsymbol{I}_{A_{1 j}} \cup_{A_{2 j}} $是一个关于{Y1jY2j}分量不减的函数. 那么有

    重复上述证明过程可得

    同样地,$ h\left(Y_{2 j}\right) \boldsymbol{I}_{A_{1 j} \cup A_{2 j} \cup \ldots \cup A_{n_{1}-1, j}}$是关于{Y1jY2j,…,Yn1-1,j}分量不减的函数,再次利用双参数弱鞅的性质可得

    因此可得

    从而有

    所以由(3),(4)式可得

    同理

    因此结论得证.

    若在定理2中取g(x)=x+,则有下面的推论.

    推论3  设$ \left\{Y_{n}, n \in \mathbb{N}^{2}\right\}$是一个双参数弱鞅,$\left\{c_{n}, n \in \mathbb{N}^{2}\right\} $是正的不减数列,则对任意的ε>0,有

    若在定理2中取g(x)=|x|,再令cij≡1则有下面的推论.

    推论4  设$\left\{Y_{n}, n \in \mathbb{N}^{2}\right\} $是一个双参数弱鞅,则对任意的ε>0,有

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return