Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 12
Article Contents

GAO Yarui, TAO Shuangping. Weighted End-point Estimates of Toeplitz-Type Operators Related to Singular Integral Operator with Rough Kernels[J]. Journal of Southwest University Natural Science Edition, 2021, 43(12): 81-87. doi: 10.13718/j.cnki.xdzk.2021.12.010
Citation: GAO Yarui, TAO Shuangping. Weighted End-point Estimates of Toeplitz-Type Operators Related to Singular Integral Operator with Rough Kernels[J]. Journal of Southwest University Natural Science Edition, 2021, 43(12): 81-87. doi: 10.13718/j.cnki.xdzk.2021.12.010

Weighted End-point Estimates of Toeplitz-Type Operators Related to Singular Integral Operator with Rough Kernels

More Information
  • Corresponding author: TAO Shuangping
  • Received Date: 02/12/2020
    Available Online: 20/12/2021
  • MSC: O174.2

  • As b∈BMO($\mathbb{R} $n), the main purpose of this paper is to study the end-point estimation of Toeplitz-type operator ${T_b} = \sum\limits_{k = 1}^m {{T^{k, 1}}} {M_b}{T^{k, 2}}$, where Tk, 1 is the singular integrals with rough kernels, Tk, 2 is the linear operators, and Mb(f)=bf. By applying Ap weight inequalities, it is proved that Tb is bounded from L(ω) to BMO(ω), and from Bp(ω) to CMOA(ω) as well.
  • 加载中
  • [1] COHEN J, GOSSELIN J. A BMO Estimate for Multilinear Singular Integrals[J]. Illinois Journal of Mathematics, 1986, 30(3): 445-464.

    Google Scholar

    [2] CHEN D Z. Weighted Boundedness for Toeplitz Type Operator Associated to Singular Integral Operator with Variable Calderón-Zygmund Kernel[J]. Hacettepe Journal of Mathematics and Statistics, 2019, 48(3): 657-668.

    Google Scholar

    [3] 张振荣, 赵凯. 非齐度量测度空间上广义分数次积分算子交换子的有界性[J]. 西南大学学报(自然科学版), 2020, 42(8): 88-96.

    Google Scholar

    [4] PRADOLINI G, PÉREZ C. Sharp Weighted Endpoint Estimates for Commutators of Singular Integral[J]. Michigan Mathematical Journal, 2001, 49(1): 23-37.

    Google Scholar

    [5] PÉREZ C, TRUJILLO-GONZÁLEZ R. Sharp Weighted Estimates for Multilinear Commutators[J]. Journal of the London Mathematical Society, 2002, 65(3): 672-692. doi: 10.1112/S0024610702003174

    CrossRef Google Scholar

    [6] CHANILLO S. A Note on Commutators[J]. Indiana University Mathematics Journal, 1982, 31(1): 7-16. doi: 10.1512/iumj.1982.31.31002

    CrossRef Google Scholar

    [7] DUONG X T, MCINTOSH A. Singular Integral Operators with Non-Smooth Kernels on Irregular Domains[J]. Revista Matematica Iberoamericana, 1999, 15(2): 233-265.

    Google Scholar

    [8] DUONG D X, YAN L. Commutators of BMO Functions and Singular Integral Operators with Non-Smooth Kernels[J]. Bulletin of the Australian Mathematical Society, 2003, 67(2): 187-200. doi: 10.1017/S0004972700033669

    CrossRef Google Scholar

    [9] 陶双平, 刘钰琦. 变量核齐次分数次积分在Morrey空间上的估计[J]. 西南大学学报(自然科学版), 2017, 39(12): 52-58.

    Google Scholar

    [10] 赵欢, 周疆. 带变量核的分数次积分交换子在变指数Herz-Morrey空间上的有界性[J]. 西南师范大学学报(自然科学版), 2018, 43(6): 11-16.

    Google Scholar

    [11] 刘岚喆, 谢璋琦. 平均振荡和相关于具有非光滑核的奇异积分算子的Toeplitz型算子的有界性[J]. 数学年刊(中文版), 2016, 37(1): 97-108.

    Google Scholar

    [12] XIE P Z, CAO G F. Toeplitz-Type Operators in Weighted Morrey Spaces[J]. Journal of Inequalities and Applications, 2013, 2013(1): 1-9. doi: 10.1186/1029-242X-2013-1

    CrossRef Google Scholar

    [13] LU S Z, MO H X. Toeplitz Type Operators on Lebesgue Spaces[J]. Acta Mathematica Scientia, 2009, 29(1): 140-150. doi: 10.1016/S0252-9602(09)60014-X

    CrossRef Google Scholar

    [14] GARCIA-CUERVA J, FRANCIA R D. Weighted Norm Inequalities and Related Topics[M]. Amsterdam: North-Holland Publishing Company, 1985: 485.

    Google Scholar

    [15] CHEN D. Endpoint Estimates for Multilinear Fractional Singular Integral Operators on Herz and Herz Type Hardy spaces[J]. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293

    CrossRef Google Scholar

    [16] MARTELL J M. Sharp Maximal Functions Associated with Approximations of the Identity in Spaces of Homogeneous Type and Applications[J]. Studia Mathematica, 2004, 161(2): 113-145.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1815) PDF downloads(215) Cited by(0)

Access History

Other Articles By Authors

Weighted End-point Estimates of Toeplitz-Type Operators Related to Singular Integral Operator with Rough Kernels

    Corresponding author: TAO Shuangping

Abstract: As b∈BMO($\mathbb{R} $n), the main purpose of this paper is to study the end-point estimation of Toeplitz-type operator ${T_b} = \sum\limits_{k = 1}^m {{T^{k, 1}}} {M_b}{T^{k, 2}}$, where Tk, 1 is the singular integrals with rough kernels, Tk, 2 is the linear operators, and Mb(f)=bf. By applying Ap weight inequalities, it is proved that Tb is bounded from L(ω) to BMO(ω), and from Bp(ω) to CMOA(ω) as well.

  • 开放科学(资源服务)标志码(OSID):

  • t>0,at(xy)为$\mathbb{R} $n×$\mathbb{R} $n上的函数,满足

    其中σ为(0,∞)上非负有界的递减函数,并且存在ε>0,使得

    fLp($\mathbb{R} $n)(p≥1),恒等逼近Dt定义为

    定义1   设TL2($\mathbb{R} $n)上的有界线性算子,并且存在K(xy),使得对每个具有紧支集的连续函数f,有

    并且满足

    (a) 存在恒等逼近{Btt>0}和常数c1c2>0,使得T$\circ$Bt的核函数kt(xy)满足

    (b) 存在恒等逼近{Att>0}和常数c3c4>0,以及δ>0,使得At$\circ$T的核函数Kt(xy)满足

    则称T为粗糙核的奇异积分算子.

    奇异积分及其交换子已被广泛研究[1-5]. 文献[6]证明了分数次奇异积分算子的Lp($\mathbb{R} $n)有界性. 关于粗糙核奇异积分算子和变量核的分数次积分算子更多的研究结果可参见文献[7-10]. 文献[11]给出了关于粗糙核奇异积分的Toeplitz算子从Lebesgue空间到Orlicz空间的有界性. 关于Toeplitz-型算子的更多结论可见文献[12-13]. 本文的主要目的是给出关于上面粗糙核奇异积分的Toeplitz-型算子的加权端点估计.

    T为定义1中的粗糙核奇异积分,b$\mathbb{R} $n上的局部可积函数,与T相关的Toeplitz-型算子定义为

    其中Tk,1T或±I(I为恒等算子),Tk,2为线性算子(k=1,…,m),Mb(f)=bf.

    p′表示p的共轭指标,即$\frac{1}{p} + \frac{1}{{{p^\prime }}} = 1, \; {f_Q} = \frac{1}{{|Q|}}\int_Q f (x){\rm{d}}x.\; {A_p}(1 < p < \infty)$[14]的定义为

    A1权的定义为

    给定$\mathbb{R} $n中的方体Q和局部可积函数b,由文献[14]有

    定义2   令{Att>0}为恒等逼近,ω为权函数,

    (a) 关于{Att>0}的加权BMO空间定义为

    其中,ω(Q)=∫Qω(x)dxtQ=l(Q)2l(Q)为方体Q的边长.

    (b) 关于{Att>0}的加权中心CMO空间定义为

    其中,Q(0,r)表示中心为0边长为r的方体,tQ=r2.

    定义3  设1<p<∞,ω是权函数,空间Bp(ω)定义为

    最近,文献[15]研究了多线性分数次奇异积分在Herz空间和Herz-型Hardy空间上的端点估计. 本文的主要结果如下:

    定理1   设T是粗糙核的奇异积分算子,Tk,2L(ω)上的有界线性算子,ωA1. 如果对于任意的gLr($\mathbb{R} $n)(1<r<∞),都有T1(g)=0,那么当b∈BMO($\mathbb{R} $n)时,Tb是从L(ω)到BMOA(ω)的有界算子.

    定理2   设T是粗糙核的奇异积分算子,1<p<∞,Tk,2Bp(ω)上的有界线性算子,ωA1. 如果对于任意的gLr($\mathbb{R} $n)(1<r<∞),都有T1(g)=0,那么当b∈CMO($\mathbb{R} $n)时,Tb是从Bp(ω)到CMOA(ω)的有界算子.

    引理1[14]   设ωApp≥1,则对$\mathbb{R} $n中的任意方体Q,存在一个绝对常数C>0,使得

    引理2[14]  设0<pq<∞,1r=1p-1q,对f≥0,记

    引理3[7, 16]   粗糙核奇异积分算子T是(pp)-型的和弱(1,1)-型的,其中1<p<∞.

    引理4[16]  设T是粗糙核奇异积分,ωA1,1<p<∞,则‖TfLp(ω)CfLp(ω).

    定理1的证明  只需证:对于任意的方体Q,存在常数C>0,成立

    不失一般性,假设Tk,1T(k=1,…,m). 固定方体Q=Q(x0d),注意到T1(g)=0,有

    其中tQ=(l(Q))2l(Q)表示Q的边长.

    对于I1,因为ωA1,则ω满足反向Hölder不等式

    其中1<q<∞. 根据引理1和引理4,有

    下面估计I2.

    TLp($\mathbb{R} $n)有界性得

    对于J2,注意到当xQy∈2j+1QjQ时,有|x-y|≤2j-1tQ,则

    因此

    由于

    所以

    结合J1J2的估计,得出

    最后估计I3. 注意到当xQy$\mathbb{R} $n\2Q时,有|x-y|~|x0-y|,由K的条件有

    至此,就完成了定理1的证明.

    定理2的证明  不失一般性,假设Tk,1T(k=1,…,m). 对任意的方体Q=Q(0,d),类似于定理1的证明,记tQ=d2,有

    L1,由引理4和Hölder不等式,对于任意的t>1,有

    下面估计L2.

    对任意的s>0,取1<qp,则$\omega \in A_{1} \subset A_{\frac{p}{q}}$,由T的弱(L1L1)有界性和引理2,有

    $\frac{p}{q}>\nu>1$,则ωApνq,由Hölder不等式和引理3,得

    由于

    所以

    结合M1M2的估计,就有

    最后对L3做出估计. 由于

    因此,对任意的1<mp,由Hölder不等式,有

    故得到了L3CfBp(ω)bCMO.

    至此,定理2证毕.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return