Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 12
Article Contents

WANG Xiaoyan, ZHAO Kai. Boundedness of the Variation Operators Associated with High-Order Schrödinger-Type Operators on the Herz-Type Spaces[J]. Journal of Southwest University Natural Science Edition, 2021, 43(12): 88-94. doi: 10.13718/j.cnki.xdzk.2021.12.011
Citation: WANG Xiaoyan, ZHAO Kai. Boundedness of the Variation Operators Associated with High-Order Schrödinger-Type Operators on the Herz-Type Spaces[J]. Journal of Southwest University Natural Science Edition, 2021, 43(12): 88-94. doi: 10.13718/j.cnki.xdzk.2021.12.011

Boundedness of the Variation Operators Associated with High-Order Schrödinger-Type Operators on the Herz-Type Spaces

More Information
  • Corresponding author: ZHAO Kai
  • Received Date: 10/12/2020
    Available Online: 20/12/2021
  • MSC: O174.2

  • Let $\mathscr{L}$=(-Δ)2+V2 be a high-order Schrödinger-type operator in $\mathbb{R}$n (n≥5), where V is a non-negative potential satisfying the reverse Hölder inequality. Suppose that Vρ(e-tL) is the variation operator associated with the high-order Schrödinger operator. Based on the boundedness of the variation operators on Lq spaces, and using the atomic decomposition of Herz-type Hardy spaces and the properties of the Schrödinger-type operators, the inequalities are estimated. The boundedness of the variation operators associated with the Schrödinger-type operators from Herz-type Hardy spaces into the Herz spaces is proved. The boundedness of the variation operators on Morrey-Herz spaces is also obtained.
  • 加载中
  • [1] LU S Z, YANG D C. The Weighted Herz-Type Hardy Spaces and Its Applications[J]. Science in China, 1995, 38(6): 662-673.

    Google Scholar

    [2] LU S Z, YANG D C, HU G E. Herz Type Spaces and Their Applications[M]. Beijing: Science Press, 2008.

    Google Scholar

    [3] LU S Z, XU L F. Boundedness of Rough Singular Integral Operators on the Homogeneous Morrey-Herz Spaces[J]. Hokkaido Mathematical Journal, 2005, 34(2): 299-314.

    Google Scholar

    [4] 李睿, 陶双平. 多线性奇异积分算子在加权Morrey-Herz空间上的有界性[J]. 西南大学学报(自然科学版), 2016, 38(10): 62-67.

    Google Scholar

    [5] 陶双平, 刘钰琦. 变量核齐次分数次积分在Morrey空间上的估计[J]. 西南大学学报(自然科学版), 2017, 39(12): 52-58.

    Google Scholar

    [6] 周盼, 周疆. 多线性分数次积分算子在Morrey型空间上新的端点估计[J]. 西南大学学报(自然科学版), 2017, 39(12): 74-80.

    Google Scholar

    [7] 郭庆栋, 周疆. 分数次Hardy算子的交换子在Lipschitz空间上的端点估计[J]. 西南大学学报(自然科学版), 2019, 41(8): 41-47.

    Google Scholar

    [8] 赵欢, 周疆. 带变量核的分数次积分交换子在变指数Herz-Morrey空间上的有界性[J]. 西南师范大学学报(自然科学版), 2018, 43(6): 11-16.

    Google Scholar

    [9] 张振荣, 赵凯. 非齐度量测度空间上广义分数次积分算子交换子的有界性[J]. 西南大学学报(自然科学版), 2020, 42(8): 88-96.

    Google Scholar

    [10] DUONG X, YAN L X. Duality of Hardy and BMO Spaces Associated with Operators with Heat Kernel Bounds[J]. Journal of the American Mathematical Society, 2005, 18(4): 943-973. doi: 10.1090/S0894-0347-05-00496-0

    CrossRef Google Scholar

    [11] DUONG X T, YAN L X. New Function Spaces of BMO Type, the John-Niremberg Inequality, Interpolation, and Applications[J]. Communications on Pure and Applied Mathematics, 2005, 58(10): 1375-1420. doi: 10.1002/cpa.20080

    CrossRef Google Scholar

    [12] JIANG R J, YANG D C. New Orlicz-Hardy Spaces Associated with Divergence Form Elliptic Operators[J]. Journal of Functional Analysis, 2010, 258(4): 1167-1224. doi: 10.1016/j.jfa.2009.10.018

    CrossRef Google Scholar

    [13] HOFMANN S, LU G Z, MITREA D, et al. Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates[J]. Memoirs of the American Mathematical Society, 2011, 214(1007): 78.

    Google Scholar

    [14] CAO J, LIU Y, YANG D C. Hardy Spaces HL1($\mathbb{R}$n) Associated to Schrödinger Type Operators (-Δ)2+V2[J]. Houston Journal of Mathematics, 2010, 36(4): 1067-1095.

    $\mathbb{R}$n) Associated to Schrödinger Type Operators (-Δ)2+V2" target="_blank">Google Scholar

    [15] LIU Y, DONG J F. Some Estimates of Higher Order Riesz Transform Related to Schrödinger Type Operators[J]. Potential Analysis, 2009, 32(1): 41-55.

    Google Scholar

    [16] LIU Y, ZHANG J, SHENG J L, et al. Some Estimates for Commutators of Riesz Transform Associated with Schrödinger Type Operators[J]. Czechoslovak Mathematical Journal, 2016, 66(1): 169-191.

    Google Scholar

    [17] LIU S Y, ZHANG C. Boundedness of Variation Operators Associated with the Heat Semigroup Generated by the High Order Schrödinger Type Operators[J]. Acta Mathematical Scientia, 2020, 40(5): 1215-1228.

    Google Scholar

    [18] SHEN Z W. Lp Estimates for Schrödinger Operators with Certain Potentials[J]. Annales De I'Institut, 1995, 45(2): 513-546.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1900) PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Boundedness of the Variation Operators Associated with High-Order Schrödinger-Type Operators on the Herz-Type Spaces

    Corresponding author: ZHAO Kai

Abstract: Let $\mathscr{L}$=(-Δ)2+V2 be a high-order Schrödinger-type operator in $\mathbb{R}$n (n≥5), where V is a non-negative potential satisfying the reverse Hölder inequality. Suppose that Vρ(e-tL) is the variation operator associated with the high-order Schrödinger operator. Based on the boundedness of the variation operators on Lq spaces, and using the atomic decomposition of Herz-type Hardy spaces and the properties of the Schrödinger-type operators, the inequalities are estimated. The boundedness of the variation operators associated with the Schrödinger-type operators from Herz-type Hardy spaces into the Herz spaces is proved. The boundedness of the variation operators on Morrey-Herz spaces is also obtained.

  • 开放科学(资源服务)标志码(OSID):

  • $\mathbb{R}$n上的Herz-型空间和奇异积分算子及其交换子有界性的问题自20世纪90年代中后期以来得到了迅猛发展[1-9]. 微分算子的空间理论和奇异积分算子理论在21世纪取得了丰硕的成果,与微分算子相关的变分算子也受到了许多学者的关注[10-16]. 最近,文献[17]讨论了$\mathbb{R}$n(n≥5)上的与高阶Schrödinger-型算子相关的一类变分算子在Lq($\mathbb{R}$n)空间的有界性问题,并得到了这类变分算子在一类与微分算子相关的Morrey空间上的有界性.

    对于这类与高阶Schrödinger-型算子$\mathscr{L}$生成的热半群相关的变分算子在函数空间上有界性的研究,我们的目的主要是建立此类变分算子在Herz-型空间上的有界性.

    设非负位势V属于反向Hölder类RHqq$q>\frac{n}{2}$. $\mathbb{R}$n(n≥5)上的微分算子$\mathscr{L}$=(-Δ)2+V2称为高阶Schrödinger-型算子,其中Δ是调和算子. 由算子$\mathscr{L}$生成的热半群e-t$\mathscr{L}$定义为

    这里热半群e-t$\mathscr{L}$的核$\mathscr{B}$t(xy)满足(其中Cc1为常数)

    定义1[17]   设{ti}i$\mathbb{N}$是正的单调减的趋于0的数列,令ρ>2,与高阶Schrödinger-型算子$\mathscr{L}$生成的热半群相关的变分算子定义为

    这里的上确界取遍所有正的单调减的趋于0的数列{ti}i$\mathbb{N}$.

    定义

    引理1[18]   设$V \in R H_{\frac{n}{2}}$($\mathbb{R}$n),则存在常数Ck0>1,使得对于所有的xy$\mathbb{R}$n,有

    特别地,当|x-y|<(x)时,γ(x)~γ(y).

    引理2[17]   对任意N$\mathbb{N} $,存在正常数Cc2c3,使得对所有xy$\mathbb{R}$n和0<t<∞,有:

    (ⅰ) |$\mathscr{B}$t(xy)|$ \le C{t^{ - \frac{n}{4}}}{\left({1 + \frac{{\sqrt t }}{{{\gamma ^2}(x)}} + \frac{{\sqrt t }}{{{\gamma ^2}(y)}}} \right)^{ - N}}{{\rm{e}}^{ - {c_2}|x - y{|^{\frac{4}{3}}}{t^{ - \frac{1}{3}}}}}$

    (ⅱ) |$\frac{\partial }{{\partial t}}$$\mathscr{B}$t(xy)|$ \le C{t^{ - \frac{n}{4} - 1}}{\left({1 + \frac{{\sqrt t }}{{{\gamma ^2}(x)}} + \frac{{\sqrt t }}{{{\gamma ^2}(y)}}} \right)^{ - N}}{{\rm{e}}^{ - {c_3}|x - y{|^{\frac{4}{3}}}{t^{ - \frac{1}{3}}}}}$.

    引理3[17]   设VRHq0($\mathbb{R}$n),其中$q_{0} \in\left(\frac{n}{2}, \infty\right)$n≥5,则对于ρ>2,存在常数C>0,使得

    对于整数k,记Bk={x$\mathbb{R}$n:|x-x0|<2k},Ck=Bk\Bk-1χk=χCk. 有关齐型Herz空间以及齐型Herz-型Hardy空间的概念和主要结论如下:

    定义2[2]   令-∞<α<∞,0<p<∞,0<q≤∞. 则空间$\mathbb{R}$n上的齐型Herz空间$\dot{K}_{q}^{\alpha, p}$($\mathbb{R}$n)定义为

    其中

    齐型Herz-Hardy空间定义为

    其中$Gf(x) = \mathop {\sup }\limits_{\varphi \in {A_N}} \left| {\varphi _\nabla ^*(f)} \right|$,而$A_{N}=\left\{\varphi \in S\left(\mathbb{R}^{n}\right): \sup\limits_{|\alpha|, |\beta| \leqslant N}\left|x^{\alpha} D^{\beta} \varphi(x)\right| \leqslant 1\right\}, N>n$.

    定义3[2]  令$1 < q < \infty, n\left(1-\frac{1}{q}\right) \leqslant \alpha < \infty, s \geqslant\left[\alpha+n\left(1-\frac{1}{q}\right)\right]$,[·]表示取整函数. 若$\mathbb{R}$n上的函数a(x)满足以下条件:

    (ⅰ) supp aB(x0r),r>0;

    (ⅱ) ‖aLq($\mathbb{R}$n)≤|B(x0r)|$-\frac{\alpha}{n}$

    (ⅲ) ∫xσa(x)dx=0,|σ|≤s.

    则称a(x)为中心(αq)-原子.

    引理4[2]  设1<q<∞,0<p<∞,令$n\left(1-\frac{1}{q}\right) \leqslant \alpha<\infty$. 则$f \in H \dot{K}_{q}^{\alpha, p}$($\mathbb{R}$n)当且仅当存在原子列aj和数列{λj},使得$f = \sum\limits_{j = - \infty }^{ + \infty } {{\lambda _j}} {a_j}$,且$\sum\limits_{j = - \infty }^{ + \infty } {{{\left| {{\lambda _j}} \right|}^p}} < \infty $,其中aj是支在球Bj上的中心(αq)-原子. 进一步有

    这里的下确界取遍f的所有分解.

    定义4[3]α$\mathbb{R}$,0<p<∞,1<q<∞,0≤λ<∞,$\mathbb{R}$n上的齐型Morrey-Herz空间$M \dot{K}_{p, q}^{\alpha, \lambda}$定义为

    其中

    定理1  设Vρ(e-t$\mathscr{L}$)是与高阶Schrödinger-型算子$\mathscr{L}$相关的由(2)式定义的变分算子,令0<p<∞,1<q<∞. 若VRHq0($\mathbb{R}$n),其中$q_{0} \in\left(\frac{n}{2}, \infty\right)$n≥5,ρ>2,则存在NN,使得当$n\left({1 - \frac{1}{q}} \right) \le \alpha < N + n\left({1 - \frac{1}{q}} \right)$时,变分算子Vρ(e-t$\mathscr{L}$)是从Herz-Hardy空间$H\dot K_q^{\alpha, p}$($\mathbb{R}$n)到Herz空间$\dot K_q^{\alpha, p}$q($\mathbb{R}$n)的有界算子.

    定理2   设Vρ(e-t$\mathscr{L}$)是与高阶Schrödinger-型算子$\mathscr{L}$相关的由(2)式定义的变分算子,令0<p<∞,1<q<∞,0<λ<∞. 若VRHq0($\mathbb{R}$n),其中$q_{0} \in\left(\frac{n}{2}, \infty\right)$n≥5,ρ>2,则当αλ+$n\left(1-\frac{1}{q}\right)$时,变分算子Vρ(e-t$\mathscr{L}$)是$M\dot K_{p, q}^{\alpha, \lambda }$($\mathbb{R}$n)上的有界算子.

    定理1的证明   对任意f$H\dot K_q^{\alpha, p}$($\mathbb{R}$n),由原子分解理论知,存在原子列{aj}和数列{λj},使得

    其中aj是中心(αq)-原子,supp ajBj,且

    对于I2,分为0<p≤1和1<p<∞两种情况进行讨论:

    当0<p≤1时,由引理3、Jensen不等式以及原子的大小条件,有

    当1<p<∞时,由引理3、Hölder不等式和原子的大小条件,可得

    对于I1,注意到jl+2,xClyBj,则x$\mathbb{R}$nBj,|x-y|≥$\frac{1}{2}$|x-x0|. 因此,分成|x-x0|≤γ(x0)和|x-x0|>γ(x0)两种情况讨论.

    当|x-x0|≤γ(x0)时,由引理2知

    所以,由Hölder不等式以及原子的大小条件,得

    从而

    $N_{1}>\alpha-n\left(1-\frac{1}{q}\right)$,则当0<p≤1时,由Jensen不等式有

    当1<p<∞时,由Hölder不等式可得

    当|x-x0|>γ(x0)时,由定义1和引理2,并应用(3)式,得

    其中$N_{3}=\left[\frac{N_{2}\left(k_{0}-1\right)}{k_{0}+1}\right]$.

    选择适当的N2N4为同一个N,使得(6)式和(7)式同时成立,且$N>\alpha-n\left(1-\frac{1}{q}\right)$,则有

    同理,可以得到

    因此

    至此,完成了定理1的证明.

    定理2的证明  对任意f$M\dot K_{p, q}^{\alpha, \lambda }$($\mathbb{R}$n),令$f(x)=\sum\limits_{j=-\infty}^{\infty} f \chi_{j}(x)=\sum\limits_{j=-\infty}^{\infty} f_{j}(x)$. 则有

    对于J2,由引理3,即变分算子的Lq有界性,有

    再由不等式

    并注意到αλ,可以得到

    对于J1,同样有jl+2,xClyBj,则x$\mathbb{R}$nBj,|x-y|≥$\frac{1}{2}$|x-x0|. 因此

    所以得到

    这样

    同样,再由不等式(8),并注意到$\alpha<\lambda+n\left(1-\frac{1}{q}\right)$,得

    这就完成了定理2的证明.

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return