Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2024 Volume 46 Issue 7
Article Contents

ZENG Shunde, ZENG Xiaofeng, YAN Mi, et al. Effects of Different UVC Treatment Time on the Storage and Transport Quality of Fresh Morchella esculenta[J]. Journal of Southwest University Natural Science Edition, 2024, 46(7): 49-56. doi: 10.13718/j.cnki.xdzk.2024.07.006
Citation: ZENG Shunde, ZENG Xiaofeng, YAN Mi, et al. Effects of Different UVC Treatment Time on the Storage and Transport Quality of Fresh Morchella esculenta[J]. Journal of Southwest University Natural Science Edition, 2024, 46(7): 49-56. doi: 10.13718/j.cnki.xdzk.2024.07.006

Effects of Different UVC Treatment Time on the Storage and Transport Quality of Fresh Morchella esculenta

More Information
  • Received Date: 11/09/2023
    Available Online: 20/07/2024
  • MSC: S379.2

  • With fresh Morchella esculenta produced in Chongqing Qianjiang as experiment material, the effects of the time of UVC treatment on the sensory quality, browning degree, soluble solids, soluble protein, superoxide dismutase (SOD), catalase (CAT) and secondary metabolite malondialdehyde (MDA) content were studied. The results showed that compared to the control, 30 min of UVC processing increased sensory quality of Morchella esculenta stored for 2d, 4d, 6d, 8d and 10d after treatment by 10.15%, 14.29%, 15.38%, 40.05% and 57.14%, decreased browning degree by 15.21%, 25.33%, 37.86%, 35.17% and 44.46%, increased soluble protein by 10.29%, 2.87%, 13.96%, 12.26% and 12.51%, enhanced SOD by 24.54%, 24.46%, 23.72%, 5.54% and 7.49%, and CAT by 3.45%, 23.69%, 5.64%, 15.24% and 41.16%, and decreased the accumulation degree of MDA by 6.31%, 11.36%, 10.02%, 5.61% and 13.80%, respectively. Compared to the with control, 20 min and 40 min of UVC treatments did not achieve the significant effects on above parameters as the effects of 30 min UVC processing. 30 min UVC dose can be used as the optimal treatment.

  • 加载中
  • [1] ZHANG Q, WU C E, WANG T, et al. Improvement of Biological Activity of Morchella esculenta Protein Hydrolysate by Microwave-assisted Selenization[J]. Journal of Food Science, 2019, 84(1): 73-79. doi: 10.1111/1750-3841.14411

    CrossRef Google Scholar

    [2] LIU W, CAI Y L, ZHANG Q Q, et al. Subchromosome-scale Nuclear and Complete Mitochondrial Genome Characteristics of Morchella crassipes[J]. International Journal of Molecular Sciences, 2020, 21(2): 483. doi: 10.3390/ijms21020483

    CrossRef Google Scholar

    [3] LIU H M, XU J J, LI X, et al. Effects of Microelemental Fertilizers on Yields, Mineral Element Levels and Nutritional Compositions of the Artificially Cultivated Morchella conica[J]. Scientia Horticulturae, 2015, 189: 86-93. doi: 10.1016/j.scienta.2015.03.047

    CrossRef Google Scholar

    [4] WANG J Q, XIAO J, GENG F, et al. Metabolic and Proteomic Analysis of Morel Fruiting Body (Morchella importuna)[J]. Journal of Food Composition and Analysis, 2019, 76: 51-57. doi: 10.1016/j.jfca.2018.12.006

    CrossRef Google Scholar

    [5] CAI Z N, LI W, MEHMOOD S, et al. Structural Characterization, in Vitro and in Vivo Antioxidant Activities of a Heteropolysaccharide from the Fruiting Bodies of Morchella esculenta[J]. Carbohydrate Polymers, 2018, 195: 29-38. doi: 10.1016/j.carbpol.2018.04.069

    CrossRef Google Scholar

    [6] LI W, CAI Z N, MEHMOOD S, et al. Anti-Inflammatory Effects of Morchella esculenta Polysaccharide and Its Derivatives in Fine Particulate Matter-treated NR8383 Cells[J]. International Journal of Biological Macromolecules, 2019, 129: 904-915. doi: 10.1016/j.ijbiomac.2019.02.088

    CrossRef Google Scholar

    [7] LI F H, ZHENG S J, ZHAO J C, et al. Phenolic Extract of Morchella angusticeps Peck Inhibited the Proliferation of HepG2 Cells in Vitro by Inducing the Signal Transduction Pathway of P38/MAPK[J]. Journal of Integrative Agriculture, 2020, 19(11): 2829-2838. doi: 10.1016/S2095-3119(20)63322-6

    CrossRef Google Scholar

    [8] YANG Y X, CHEN J L, LEI L, et al. Acetylation of Polysaccharide from Morchella angusticeps Peck Enhances Its Immune Activation and Anti-inflammatory Activities in Macrophage RAW264.7 Cells[J]. Food and Chemical Toxicology, 2019, 125: 38-45. doi: 10.1016/j.fct.2018.12.036

    CrossRef Google Scholar

    [9] CUI H L, CHEN Y, WANG S S, et al. Isolation, Partial Characterisation and Immunomodulatory Activities of Polysaccharide from Morchella esculenta[J]. Journal of the Science of Food and Agriculture, 2011, 91(12): 2180-2185. doi: 10.1002/jsfa.4436

    CrossRef Google Scholar

    [10] LEI J, LI B J, ZHANG N, et al. Effects of UV-C Treatment on Browning and the Expressionof Polyphenol Oxidase (PPO) Genes in Different Tissues of Agaricusbisporusduring Cold Storage[J]. Postharvest Biology and Technology, 2018, 139: 99-105. doi: 10.1016/j.postharvbio.2017.11.022

    CrossRef Google Scholar

    [11] 张沙沙, 朱立, 曹晶晶, 等. 采后预处理对羊肚菌保鲜效果的影响[J]. 食品工业科技, 2016, 37(13): 319-322.

    Google Scholar

    [12] 郭奇亮, 张正周, 刘继, 等. 一种羊肚菌的长时保鲜方法: CN106615079B[P]. 2020-11-03.

    Google Scholar

    [13] 曹丽萍. 一种利用乳酸链球菌素保鲜羊肚菌的方法: CN107568329A[P]. 2018-01-12.

    Google Scholar

    [14] 杨威, 樊建, 赵天瑞. 棘托竹荪菌丝体提取液对羊肚菌保鲜的研究[J]. 中国食用菌, 2017, 36(4): 53-57.

    Google Scholar

    [15] 李翔, 肖星星, 邓杰, 等. 壳聚糖涂膜保鲜羊肚菌研究[J]. 成都大学学报(自然科学版), 2018, 37(4): 366-369. doi: 10.3969/j.issn.1004-5422.2018.04.007

    CrossRef Google Scholar

    [16] 许瀛引, 谢丽源, 张志远, 等. 微酸性电解水和紫外光结合对采后六妹羊肚菌的保鲜作用[J]. 菌物学报, 2021, 40(12): 3332-3346.

    Google Scholar

    [17] 管俊林, 刘云云, 张国平, 等. 高压静电在羊肚菌生产加工中的应用效果研究[J]. 现代农业科技, 2019(22): 33-35.

    Google Scholar

    [18] 郭佳, 陈谦, 徐攀, 等. 基于正交偏最小二乘判别分析探究60Co-γ辐照对羊肚菌采后低温贮藏品质的影响[J]. 食品科学, 2022, 43(21): 315-323. doi: 10.7506/spkx1002-6630-20211204-051

    CrossRef Google Scholar

    [19] ALMASIH, OSKOUIE M J, SALEH A. A Reviewon Techniques Utilized for Design of Controlled Release Food Active Packaging[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(15): 2601-2621. doi: 10.1080/10408398.2020.1783199

    CrossRef Google Scholar

    [20] 李文香, 樊铭聪, 赵淑芬, 等. 不同厚度LDPE膜对平菇保鲜效果的影响[J]. 包装与食品机械, 2015(6): 6-11. doi: 10.3969/j.issn.1005-1295.2015.06.002

    CrossRef Google Scholar

    [21] QU P, ZHANG M, FAN K, et al. Microporous Modified Atmosphere Packaging to Extend Shelf Life of Fresh Foods: A Review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(1): 51-65. doi: 10.1080/10408398.2020.1811635

    CrossRef Google Scholar

    [22] 黄雪, 刘莎莎, 谢瑶, 等. O2/CO2主动自发气调对羊肚菌4 ℃下贮藏品质的影响[J]. 中国食用菌, 2020, 39(3): 56-62.

    Google Scholar

    [23] YE J J, LI J R, HAN X X, et al. Effects of Active Modified Atmosphere Packaging on Postharvest Quality of Shiitake Mushrooms (Lentinula edodes) Stored at Cold Storage[J]. Journal of Integrative Agriculture, 2012, 11(3): 474-482. doi: 10.1016/S2095-3119(12)60033-1

    CrossRef Google Scholar

    [24] 于晋泽, 李萍, 张娜, 等. 不同浓度臭氧对羊肚菌的保鲜作用[J]. 江苏农业学报, 2020, 36(2): 494-499. doi: 10.3969/j.issn.1000-4440.2020.02.033

    CrossRef Google Scholar

    [25] 钱书意, 张红颖, 张洋洋, 等. 短波紫外线照射对白玉菇采后贮藏品质的影响[J]. 保鲜与加工, 2018, 18(2): 25-30, 38.

    Google Scholar

    [26] 徐丽婧, 常明昌, 孟俊龙, 等. UV-C处理对双孢蘑菇采后品质的影响[J]. 食品工业科技, 2016, 37(1): 347-350, 380.

    Google Scholar

    [27] JIANG T J, JAHANGIR M M, JIANG Z H, et al. Influence of UV-C Treatment on Antioxidant Capacity, Antioxidant Enzyme Activity and Texture of Postharvest Shiitake (Lentinused odes) Mushrooms during Storage[J]. Postharvest Biology and Technology, 2010, 56(3): 209-215. doi: 10.1016/j.postharvbio.2010.01.011

    CrossRef Google Scholar

    [28] 李波, 芦菲, 余小领, 等. 短波紫外线照射对鸡腿菇保鲜的影响[J]. 农业工程学报, 2009, 25(6): 306-309.

    Google Scholar

    [29] 单楠, 杨芹, 杨文建, 等. 纳米包装材料延长金针菇贮藏品质的作用[J]. 食品科学, 2012, 33(2): 262-266.

    Google Scholar

    [30] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007.

    Google Scholar

    [31] 胡子有. 金都1号火龙果果实发育过程中品质的变化规律分析[J]. 南方农业学报, 2018, 49(12): 2500-2505.

    Google Scholar

    [32] 滕建文, 曾文谨, 姬晨, 等. 芒果的臭氧保鲜研究[J]. 食品科技, 2008, 33(8): 233-235.

    Google Scholar

    [33] LI M L, LI X A, LI J, et al. Responses of Fresh-cut Strawberries to Ethanol Vapor Pretreatment: Improved Quality Maintenance and Associated Antioxidant Metabolism in Gene Expression and Enzyme Activity Levels[J]. Journal of Agricultural and Food Chemistry, 2018, 66(31): 8382-8390.

    Google Scholar

    [34] 于德玲, 王昌留. 过氧化氢酶的研究进展[J]. 中国组织化学与细胞化学杂志, 2016, 25(2): 189-194.

    Google Scholar

    [35] 代崇雯, 刘亚敏, 刘玉民, 等. 3种外源物质对干旱胁迫下红椿生理特性的影响[J]. 西南大学学报(自然科学版), 2022, 44(2): 48-56. doi: 10.13718/j.cnki.xdzk.2022.02.006

    CrossRef Google Scholar

    [36] FANG D L, YANG W J, MUINDE B, et al. Effect of Nanocomposite Packaging on Postharvest Quality and Reactive Oxygen Species Metabolism of Mushrooms (Flammulina velutipes)[J]. Postharvest Biology and Technology, 2016, 119: 49-57.

    Google Scholar

    [37] 易琳琳, 应铁进. 食用菌采后品质劣变相关的生理生化变化[J]. 食品工业科技, 2012, 33(24): 434-436, 441.

    Google Scholar

    [38] 王霆, 张雨, 刘宏, 等. 臭氧熏蒸处理联合PE包装对金针菇采后贮藏品质及抗氧化能力的影响[J]. 中国农业科学, 2020, 53(4): 823-835.

    Google Scholar

    [39] 杨雪梅, 冯立娟, 尹燕雷, 等. 紫外及微波处理对鲜切石榴籽粒保鲜品质的影响[J]. 食品科学, 2016, 37(8): 260-265.

    Google Scholar

    [40] 徐点, 张慧鑫, 从心黎. 不同剂量的紫外照射结合热处理对龙眼保鲜效果的研究[J]. 热带农业科学, 2017, 37(10): 61-67.

    Google Scholar

    [41] 许斌, 朱雨婷, 侯丽真, 等. 西藏高原黄蘑菇的保鲜研究[J]. 生物技术进展, 2020, 10(1): 67-73.

    Google Scholar

    [42] 郑杨, 曹敏, 申琳, 等. 短波紫外线照射对韭菜采后贮藏品质及活性氧代谢相关酶的影响[J]. 食品科学, 2011, 32(20): 307-311.

    Google Scholar

    [43] 蔡艳, 施丽愉, 陈伟, 等. UV-C处理对采后草莓果实品质和活性氧代谢的影响[J]. 中国食品学报, 2015, 15(3): 128-136.

    Google Scholar

    [44] 梁敏华, 雷建敏, 邵佳蓉, 等. UV-C处理对桃果实酚类物质代谢和贮藏品质的影响[J]. 核农学报, 2015, 29(6): 1088-1093.

    Google Scholar

    [45] 胡丽娜, 张春岭, 刘慧, 等. 短波紫外线处理对采后山楂果营养品质及其抗氧化活性的影响[J]. 食品工业科技, 2016, 37(1): 342-346.

    Google Scholar

    [46] MANZOCCO L, PLAZZOTTA S, MAIFRENI M, et al. Impact of UV-C Light on Storage Quality of Fresh-cut Pineapple in Two Different Packages[J]. LWT - Food Science and Technology, 2016, 65: 1138-1143.

    Google Scholar

    [47] MUKHOPADHYAY S, UKUKU D O, JUNEJA V, et al. Effects of UV-C Treatment on Inactivation of Salmonella Enterica and Escherichia coli O157∶H7 on Grape Tomato Surface and Stem Scars, Microbial Loads, and Quality[J]. Food Control, 2014, 44: 110-117.

    Google Scholar

    [48] MANZOCCO L, DA PIEVE S, MAIFRENI M. Impact of UV-C Light on Safety and Quality of Fresh-cut Melon[J]. Innovative Food Science & Emerging Technologies, 2011, 12(1): 13-17.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  /  Tables(1)

Article Metrics

Article views(3440) PDF downloads(200) Cited by(0)

Access History

Effects of Different UVC Treatment Time on the Storage and Transport Quality of Fresh Morchella esculenta

Abstract: 

With fresh Morchella esculenta produced in Chongqing Qianjiang as experiment material, the effects of the time of UVC treatment on the sensory quality, browning degree, soluble solids, soluble protein, superoxide dismutase (SOD), catalase (CAT) and secondary metabolite malondialdehyde (MDA) content were studied. The results showed that compared to the control, 30 min of UVC processing increased sensory quality of Morchella esculenta stored for 2d, 4d, 6d, 8d and 10d after treatment by 10.15%, 14.29%, 15.38%, 40.05% and 57.14%, decreased browning degree by 15.21%, 25.33%, 37.86%, 35.17% and 44.46%, increased soluble protein by 10.29%, 2.87%, 13.96%, 12.26% and 12.51%, enhanced SOD by 24.54%, 24.46%, 23.72%, 5.54% and 7.49%, and CAT by 3.45%, 23.69%, 5.64%, 15.24% and 41.16%, and decreased the accumulation degree of MDA by 6.31%, 11.36%, 10.02%, 5.61% and 13.80%, respectively. Compared to the with control, 20 min and 40 min of UVC treatments did not achieve the significant effects on above parameters as the effects of 30 min UVC processing. 30 min UVC dose can be used as the optimal treatment.

  • 开放科学(资源服务)标识码(OSID):

  • 羊肚菌(Morchella esculenta)隶属子囊菌门盘菌目羊肚菌属,是一种珍稀药食兼用菌,味道鲜美、风味独特[1-2]. 研究发现,羊肚菌富含多种生物活性成分,如多糖、蛋白质、微量元素、氨基酸等[3-4],具有抗氧化[5]、抗炎[6]、抗肿瘤[7]、抗癌[8]、抗糖尿病[9]、降胆固醇[10]、免疫调节[1]等功效. 生鲜羊肚菌代谢旺盛,菌盖脆嫩,采摘和运输过程易受机械损伤,常温放置易水分散失,子实体褐变、软烂、发霉及腐臭[11]. 化学保鲜剂[12]、乳酸链球菌素[13]、棘托竹荪菌丝体保鲜液[14]、壳聚糖保鲜液[15]、微酸性电解水[16]等保鲜通常采用浸渍处理,易造成子实体相对湿度过大,不利于贮运保鲜;高压电场[17]、辐照[18-19]保鲜等对设备要求较高. 被动自发气调贮藏(PMAP)[20]因保鲜膜种类、特性繁多,难以制定针对特定食用菌保鲜统一的包装标准[21]. 主动自发气调贮藏(AMAP)[22]因充入特定气体成分,可快速达到所需气体环境实现保鲜[23],在物流保鲜中具有独特优势,但需要气调设备支撑. 随着消费健康和食品安全意识的不断提高,探寻不影响生鲜食用菌感官品质和营养价值,同时又易操作实施、成本低廉、绿色安全的配送保鲜方案成为业内首选. 臭氧和紫外处理,具有操作方便、设备投入少等优点,不同浓度臭氧对羊肚菌的保鲜作用[24]已有报道;紫外处理也已见白玉菇[25]、双孢菇[26]、香菇[27]、鸡腿菇[28]等食用菌保鲜,但针对羊肚菌紫外处理未见有单独报道. 本文以重庆黔江主栽羊肚菌品种“七妹”为试材,研究UVC不同处理时间对其感官、褐变度、蛋白质、可溶性固形物、相关抗性酶SOD、CAT活性及次生代谢产物MDA含量的影响,探究适宜的UVC处理时间,以期为生鲜羊肚菌紫外保鲜配送提供理论依据.

1.   材料与方法
  • 供试羊肚菌取自重庆市黔江区重庆市璞琢农业开发有限责任公司,新鲜采摘.

    考马斯亮蓝G-250,国药集团化学试剂有限公司;超氧化物歧化酶(SOD)试剂盒,丙二醛(MDA)含量检测试剂盒,北京索莱宝科技有限公司.

  • 飞利浦TVU30W紫外线消毒灯,北京金城合作科贸有限公司;754E紫外—可见分光光度计,天津市普瑞斯仪器有限公司;GL-12A高速冷冻离心机,上海菲恰尔分析仪器有限公司.

  • 试验设3个处理,将采摘的生鲜羊肚菌剪平菌脚,随机分为3组,每组500 g,分别采用功率30 W、波长254 nm的紫外灯于超净工作台上照射20 min,30 min,40 min,然后单层摆放,保湿纸隔离放置于泡沫箱中,(4±0.5) ℃控温贮藏,每隔2 d测定感官品质、褐变度、可溶性固形物、可溶性蛋白、SOD、CAT及次生代谢产物MDA等指标,重复3次.

  • 由经过培训的10人组成评价小组,分别从腐烂、质地、褐变、味道4个方面对贮运过程生鲜羊肚菌品质进行感官评定(表 1),取4项得分总和作为结果.

  • 褐变度参照单楠等[29]的方法,精准称取3.00 g羊肚菌,冰浴研磨转移至25 mL容量瓶中,并用0.2 mol/L磷酸盐缓冲液(pH值为6.5)定容至刻度,混匀提取10 min,然后5 000 r/min离心10 min,取上清液,在450 nm波长处测定吸光度(A450),按公式计算样品褐变度(B):

  • 手持式折光仪,参照曹建康等[30]的方法. 随机取3~5个羊肚菌子实体,放入研钵捣碎,用干净纱布榨汁,用小滴管取少量汁液滴在折射仪测试玻璃上进行测定.

  • 考马斯亮蓝染色法,取0.3 g羊肚菌样品,加入蒸馏水或缓冲液研磨成匀浆后,于4 ℃,12 000 r/min离心20 min,收集上清液即为可溶性蛋白提取液,低温保存备用.

    吸取0.5 mL样品提取上清液(视蛋白质量适当稀释),放入具塞试管中,加入5.0 mL考马斯亮蓝G-250溶液,充分混合,放置2 min后在波长595 nm处比色,按照制作标准曲线同样的方法测定吸光度值,重复3次,按公式计算可溶性蛋白质量分数(C):

    式中:m′为从标准曲线查的蛋白质量(μg);v为样品提取液总体积(mL);Vs为测定时所取样品提取液体积(mL);m为样品质量(g).

  • 参照超氧化物歧化酶(SOD)试剂盒说明书进行,以每分钟每克样品在反应体系中使560 nm处吸光值变化0.01为1个酶活力单位(U/g).

  • 参照曹建康等[30]的方法,取0.2 g羊肚菌样品置于研钵中,加入5.0 mL提取缓冲液,在冰浴条件下研磨成匀浆,于4 ℃,12 000 r/min离心30 min,收集上清液即为酶提取液,低温保存备用.

    酶促反应体系由2.9 mL 20 mmol/L H2O2溶液和100 μL酶提取液组成,以蒸馏水为参比空白,在反应15 s时开始记录反应体系在波长240 nm处的吸光度值作为初始值,然后每隔30 s记录1次,连续测定,至少获取6个点的数据,重复3次.

    式中:ΔOD240为每分钟反应混合物吸光度的变化值;OD240F为反应混合物吸光度终止值;OD240I为反应混合物吸光度初始值;tF为反应终止时间(min);tI为反应初始时间(min).

    以每克样品(鲜质量)每分钟吸光度变化值减少0.01为1个过氧化氢酶活性单位,计算公式:

    式中:U为过氧化氢酶活性(U/g);v为样品提取液总体积(mL);Vs为测定时所取样品提取液体积(mL);m为样品质量(g).

  • 参照丙二醛(MDA)测试盒说明书进行,单位为nmol/g.

2.   结果与分析
  • 生鲜羊肚菌贮运过程易发生菌柄褐变、菌盖萎蔫软烂、菌盖褶皱脱落以及内容物外溢等品质劣变现象. 图 1显示,随着贮运时间的延续,生鲜羊肚菌感官评分呈下降趋势,30 min UVC处理2 d,4 d,6 d,8 d,10 d其感官评分分别比CK对照提高10.15%,14.29%,15.38%,40.05%和57.14%,优于20 min和40 min. 40 min UVC处理不及30 min,可能与紫外处理过度伤害有关.

  • 食用菌含有大量酚类物质,生鲜食用菌采后仍维持活跃的呼吸代谢活动. 氧的大量侵入,使得多酚类物质被氧化,造成醌类物质大量形成,醌类物质又大量聚合成黑色素,从而发生褐变. 图 2显示,生鲜羊肚菌褐变度随贮运时间的延长呈上升趋势,UVC处理对褐变发生有一定的抑制作用,30 min UVC处理2 d,4 d,6 d,8 d,10 d分别比CK对照减少15.21%,25.33%,37.86%,35.17%和44.46%,优于20 min和40 min. 20 min,30 min UVC处理与CK对照相比,可明显抑制褐变发生(p<0.05),而40 min可能对其造成紫外伤害,加剧了褐变反应,效果与CK对照相当.

  • 可溶性固形物含量与果蔬成熟程度有关[31],贮藏保鲜的目的之一就是延缓可溶性固形物含量上升的速度[32],可作为一个反映羊肚菌贮藏品质变化状况的指标. 图 3显示,贮藏前期可溶性固形物呈上升趋势,这与羊肚菌后熟有关;贮藏中后期可溶性固形物呈降低趋势,这与老化有关. UVC处理在贮藏中后期可溶性固形物均低于CK对照,表明UVC处理起到了抑制羊肚菌成熟老化的作用. 30 min UVC处理可溶性固形物含量在整个贮藏期间处于最低水平,说明该处理可以有效降低羊肚菌可溶性固形物含量的上升速度,与于晋泽等[24]使用臭氧保鲜羊肚菌的结果一致.

  • 可溶性蛋白是重要的渗透调节物质和营养物质,其增加或积累能提高细胞的保水能力,对细胞生命物质及生物膜起保护作用. 图 4显示,UVC处理延缓了可溶性蛋白质量分数的下降趋势,30 min UVC处理2 d,4 d,6 d,8 d,10 d分别比CK对照增加10.29%,2.87%,13.96%,12.26%和12.51%,优于20 min和40 minUVC处理,保持相对较高的可溶性蛋白质量分数,有利于生鲜羊肚菌的保鲜.

  • SOD酶在防止细胞受到过量活性氧(ROS)损伤方面发挥着重要作用,提高SOD水平能更好地保护羊肚菌免受氧化胁迫[33]. 图 5显示,UVC处理可有效增加SOD酶活性,30 min UVC处理2 d,4 d,6 d,8 d,10 d分别比CK对照提高24.54%,24.46%,23.72%,5.54%和7.49%,特别是4 d,6 d时30 min UVC处理与20 min和40 min UVC处理差异有统计学意义(p<0.05). UVC处理贮运后期与对照差异无统计学意义.

  • CAT酶作为重要的H2O2清除剂,其活力直接反映了细胞免受活性氧损害的程度[34]. 图 6显示,UVC处理相比CK对照可明显提高其活力,30 min UVC处理2 d,4 d,6 d,8 d,10 d分别比对照提高3.45%,23.69%,5.64%,15.24%和41.16%,其中以4 d,30 min UVC处理效果与对照差异有统计学意义(p<0.05),而20 min和40 min UVC处理与对照差异无统计学意义.

  • H2O2,MDA,超氧阴离子自由基均是反映植物过氧化程度的指标之一[35]. MDA是衡量植物衰老细胞膜透性的一个重要指标[36],为植物衰老生理和抗性生理研究常用的检测指标. 图 7显示,整个贮运过程MDA质量分数一直呈上升趋势,UVC处理可延缓其累积速率,其中,30 min UVC处理2 d,4 d,6 d,8 d,10 d分别比CK对照减少6.31%,11.36%,10.02%,5.61%和13.80%,优于20 min和40 min UVC处理.

3.   讨论与结论
  • 羊肚菌品质劣变的表象为菌柄褐度、菌盖萎缩、菌盖褶皱脱落以及内容物外溢,与活性氧自由基动态平衡被破坏[37],活性氧自由基积累,MDA等有害物质产生密切相关[38]. SOD酶是机体清除活性氧的第一道防线,催化超氧化物的歧化反应,增强植物在逆境胁迫下的耐受能力,CAT酶则起协同增效作用. UVC杀菌保鲜符合当前消费者对营养、安全、绿色、天然食物的追求. UVC处理能降低石榴籽粒冷藏过程中的质量损失率、腐烂率及相对电导率,延缓总可滴定酸含量的骤变期,使籽粒中各有机酸及维生素C含量维持在较稳定的水平[39];能延缓龙眼果实失质量、可溶性固形物和可溶性蛋白质量分数的降低,减缓维生素C消耗,抑制MDA质量分数和多酚氧化酶(PPO)活性的积累,维持整个贮藏期间较高的SOD酶活性[40];可有效延长黄蘑菇保鲜期,延缓腐败变质、菌体自溶,抑制与酶促褐变密切相关的PPO酶、苯丙氨酸解氨酶(PAL)活性[41];酸性电解水结合UVC处理能减少“六妹”羊肚菌表面附着的细菌和真菌数,提高SOD酶和维生素C含量,降低PPO酶、过氧化物酶(POD)活性,改善褐变及质地软化程度[16],显著降低韭菜黄变率和腐烂率[42]. 另外,UVC处理还能提高草莓[43]、桃[44]、山楂[45]、鲜切菠萝块[46]、番茄[47]、香瓜[48]等保鲜效果,充分证明UVC处理对生鲜果蔬贮运保鲜品质保持具有重要意义. 本研究结果表明,30 min UVC处理可提高生鲜羊肚菌感官品质评分,减轻褐变度发生,明显提高可溶性蛋白质量分数,使与活性氧清除相关的SOD酶和CAT酶活性保持较高水平,减轻MDA累积程度,减缓生鲜羊肚菌品质衰败.

Figure (7)  Table (1) Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return