Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 4
Article Contents

Zhong-xian HUANG. Super-Biderivations and Super-Commuting Maps on a Class of Deformative Super W-Algebras[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 1-6. doi: 10.13718/j.cnki.xsxb.2019.04.001
Citation: Zhong-xian HUANG. Super-Biderivations and Super-Commuting Maps on a Class of Deformative Super W-Algebras[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 1-6. doi: 10.13718/j.cnki.xsxb.2019.04.001

Super-Biderivations and Super-Commuting Maps on a Class of Deformative Super W-Algebras

More Information
  • Received Date: 14/05/2018
    Available Online: 20/04/2019
  • MSC: O152.5

  • In this paper, we first determine all the super-skewsymmetric super-biderivations of a class of deformative super W-algebras WtS(2, 2). We have proved that there exist non-inner super-biderivations of the algebras. Based on the result of super-biderivations, the result shows that every linear super-commuting maps on thealgebras are non-standard.
  • 加载中
  • [1] WANG D Y, YU X X.Biderivations and Linear Commuting Maps on the Schrödinger-Virasoro Lie Algebra[J]. Communications in Algebra, 2013, 41(6):2166-2173. doi: 10.1080/00927872.2012.654551

    CrossRef Google Scholar

    [2] HAN X, WANG D Y, XIA C G. Linear Commuting Maps and Biderivations on the Lie Algebra W(a, b)[J]. J Lie Theory, 2016, 26:777-786.

    Google Scholar

    [3] XIA C G, WANG D Y, HAN X. Linear Super-Commuting Maps and Super-Biderivations on the Super-Virasoro Algebras[J]. Communications in Algebra, 2016, 44(12):5342-5350. doi: 10.1080/00927872.2016.1172617

    CrossRef Google Scholar

    [4] FAN G, DAI X. Super-Biderivations of Lie Superalgebras[J]. Linear and Multilinear algebra, 2017, 65:58-66. doi: 10.1080/03081087.2016.1167815

    CrossRef Google Scholar

    [5] ZHANG W, DONG C. W-Algebra W(2, 2) and the Vertex Operator Algebra $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right)$[J]. CommunMath Phys, 2008,285(3):991-1004.

    $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right)$" target="_blank">Google Scholar

    [6] CHEN H J, LI J B. Left-Symmetric Algebra Structures on the W-Algebra W(2, 2)[J]. Linear Algebra Appl, 2012,437(2):1821-1834.

    Google Scholar

    [7] JIANG W, PEI Y. On the Structure of Verma Modules Over the W-Algebra W(2, 2)[J]. J MathPhys, 2010, 51:1-8.

    Google Scholar

    [8] LIU D, GAO S L, ZHU L S. Classification of Irreducible Weight Modules Over W-Algebra W(2, 2)[J].J Math Phys, 2008, 49:1-6.

    Google Scholar

    [9] LI J B, SU Y C, XIN B. Lie Bialgebras of a Family of Lie Algebras of Block Type[J]. Chinese Annals of Mathematics (Ser B), 2008, 29(5):487-500. doi: 10.1007/s11401-007-0447-x

    CrossRef Google Scholar

    [10] ZHANG X F, TAN S B. θ-Unitary Representations for the W-Algebra W(2, 2)[J]. Linear Multilinear Alg, 2012, 60(5):533-543. doi: 10.1080/03081087.2011.611944

    CrossRef Google Scholar

    [11] WANG Y, CHEN Z Q, BAI C M. Classification of Balinsky-Novikov Superalgebras with Dimension 2|2[J]. JPhys(A), 2012, 45(10):201-225.

    Google Scholar

    [12] CHEN Z X. Biderivations and Linear Commuting Maps on Simple Generalized Witt Algebras Over a Field[J]. Electronic Journal of Linear Algebra, 2016, 31(1):1-12.

    Google Scholar

    [13] TANG X M, ZHONG Y. Biderivations of the Planar Galilean Conformal Algebra and Their Applications[J]. Linear and Multilinear Algebra, 2018, 67(3):1-11.

    Google Scholar

    [14] CHENG X, SUN J C. Super-Biderivations and Linear Super-Commuting Maps on the N = 2 Superconformal Algebra[J]. Mathematics and Statistics, 2018, 48(4):1-13.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1111) PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Super-Biderivations and Super-Commuting Maps on a Class of Deformative Super W-Algebras

Abstract: In this paper, we first determine all the super-skewsymmetric super-biderivations of a class of deformative super W-algebras WtS(2, 2). We have proved that there exist non-inner super-biderivations of the algebras. Based on the result of super-biderivations, the result shows that every linear super-commuting maps on thealgebras are non-standard.

  • 在本文中,$\mathbb{Z}$表示整数集,$\mathbb{C}$表示复数域,所有的模(向量空间)都定义在$\mathbb{C}$上.

    L是结合代数,若映射ψLL满足ψ(x)x = (x)(∀xL),则称ψ是交换的.结合代数上的交换映射理论有较长的历史,具有丰富的结果,应用于如李代数等许多领域.记

    李代数上的交换映射ψ也可定义为[ψ(x),x] = 0(∀xL)[1-2].将交换映射推广到李超代数上,分成标准和非标准的[3-4].如超Virasoro代数上的所有线性超交换映射是标准的[3].

    在研究顶点算子代数时产生的W-代数W(2,2),在物理理论以及数学的许多领域起重要作用[5],其作为复数域上的向量空间,有基$\left\{L_{m}, I_{m} | m \in \mathbb{Z}\right\}$,并满足如下李括号:

    已有许多关于W(2,2)的结构与表示的研究成果[5-10].形变超W-代数Wts(2,2)[11](下面简记为$\widetilde{W}$)的偶部分是W(2,2).$\widetilde{W}$是复数域上的向量空间,其基$\left\{L_{m}, I_{m}, G_{p}, H_{p} | m \in \mathbb{Z}, p \in s+\mathbb{Z}\right\}$满足如下关系式(未出现的为0):

    其中s = 0,$\frac{1}{2}, t \in \mathbb{C}$.

    双导子是研究结合代数或李代数上交换映射的有效工具[12-13].对于结合超代数和李超代数,超双导子起同样重要的作用[3-4,14].超双导子分为内导子和非内导子,如超Virasoro代数上的所有超双导子是超双内导子[3].注意到对L中的齐次元xy,有|φ(xy)| = |x|+|y|.

    本文考虑$\widetilde{W}$上的超双导子和超交换映射.证明$\widetilde{W}$上的超斜对称超双导子存在非内导子.基于此结果,得到此代数上的线性超交换映射是非标准的.这个结果有别于文献[3,14].

    引理1  $\forall L_{m}, L_{n} \in \widetilde{W}, m, n \in \mathbb{Z}$,存在λ1λ2$\mathbb{C}$,使得

     因为|φ(LmLn)| = |Lm|+|Ln| = 0,所以可设

    其中$a_{a}^{(1)}\in \mathbb{C}, b_{\beta }^{(1)}\in \mathbb{C}$.

    m = n时,[LmLn] = 0,由文献[3]中引理2.2得φ(LmLn)∈Z($\widetilde{W}$) = 0.下设mn,由文献[3]中引理2.2有

    因此

    从而:

    所以当αm+n时,aα(1) = 0;当βm+n时,bβ(1) = 0.故

    由文献[3]中引理2.1有

    可得

    k的任意性,从而:

    因此:

    分别令a1(1) = λ1b1(1) = λ2,引理1得证.

    引理2  $\forall L_{m}, I_{n} \in \widetilde{W}, m, n \in \mathbb{Z}$,则$\varphi\left(L_{m}, I_{n}\right) = \lambda_{1}(m-n) I_{m+n} = \lambda_{1}\left[L_{m}, I_{n}\right]$.

     因为|φ(LmIn)| = |Lm|+|In| = 0,所以可设

    其中$a_{a}^{(2)}\in \mathbb{C}, b_{\beta }^{(2)}\in \mathbb{C}$.

    m = n时,[LmIn] = 0,从而φ(LmIn)∈Z($\widetilde{W}$) = 0.下设mn,由

    因此

    从而当αm+n时,aα(2) = 0.故$\varphi\left(L_{m}, I_{n}\right) = a_{m+n}^{(2)} L_{m+n}+\sum\limits_{\beta \in \mathbb{Z}} b_{\beta}^{(2)} I_{\beta}$.

    又由

    可得

    因此am+n(2) = 0,且当βm+n时,bβ(2) = 0.由k的任意性,从而bm+n(2) = λ1(mn).引理2得证.

    引理3  $\forall G_{r}, G_{s} \in \widetilde{W}$rs$\mathbb{Z}$$r, s \in \frac{1}{2}+\mathbb{Z}$,则$\varphi\left(G_{r}, G_{s}\right) = \lambda_{1} I_{r+s} = \lambda_{1}\left[G_{r}, G_{s}\right]$.

     因为|φ(GrGs)| = |Gr|+|Gs| = 0,所以可设

    其中$a_{a}^{(3)}\in \mathbb{C}, b_{\beta }^{(3)}\in \mathbb{C}$.由[φ(GrGs),[GrGs]] = 0,因此

    从而当αr+s时,aα(3) = 0.故$\varphi\left(G_{r}, G_{s}\right) = a_{r+s}^{(3)} L_{r+s}+\sum\limits_{\beta \in \mathbb{Z}} b_{\beta}^{(2)} I_{\beta}$.

    又由

    可得

    因此ar+s(3) = 0,且当βr+s时,bβ(3) = 0.由k的任意性,从而br+s(3) = λ1.所以φ(GrGs) = λ1Ir+s.

    引理4  $\forall L_{m}, H_{p} \in \widetilde{W}, m \in \mathbb{Z}, p \in \mathbb{Z}$$p \in \frac{1}{2}+\mathbb{Z}$,则$\varphi\left(L_{m}, H_{p}\right) = \lambda_{1}\left(\frac{m}{2}-p\right) H_{m+p} = \lambda_{1}\left[L_{m}, H_{\rho}\right]$.

     因为|φ(LmHp)| = |Lm|+|Hp| = 1,所以可设

    其中$a_{a}^{(4)}\in \mathbb{C}, b_{\beta }^{(4)}\in \mathbb{C}$.

    ε = 0时,由

    可得

    因此aα(4) = 0,且当βm+p时,bβ(4) = 0,$b_{m+p}^{(4)} = \lambda_{1}\left(\frac{m}{2}-p\right)$.所以

    ε = 1时,由

    可得

    因此aα(4) = 0,且当βm+p时,bβ(4) = 0,$b_{m+p}^{(4)} = \lambda_{1}\left(\frac{m}{2}-p\right)$.所以

    引理5  $\forall L_{m}, G_{r} \in \widetilde{W}, m \in \mathbb{Z}, r \in \mathbb{Z}$$r \in \frac{1}{2}+\mathbb{Z}$,则

     因为|φ(LmGr)| = |Lm|+|Gr| = 1,所以可设

    其中$a_{a}^{(5)}\in \mathbb{C}, b_{\beta }^{(5)}\in \mathbb{C}$.

    ε = 0时,由

    可得

    所以:

    因此当αm+r时,$a_{\alpha}^{(5)} = 0, a_{m+r}^{(5)} = \lambda_{1}\left(\frac{m}{2}-r\right)$.代入(1)式,则当βm+r时,bβ(5) = 0,且

    $b_{m+r}^{(5)} = \lambda_{2}(m-2 r)+\lambda_{1} t(m+1)$.所以

    ε = 1时,由

    可得

    所以:

    因此当αm+r时,$a_{\alpha}^{(5)} = 0, a_{m+r}^{(5)} = \lambda_{1}\left(\frac{m}{2}-r\right)$.代入(3)式,则当βm+r时,bβ(5) = 0,且

    $b_{m+r}^{(5)} = \lambda_{2}(m-2 r)+\lambda_{1} t(m+1)$.所以

    引理6  $\forall I_{m}, G_{r} \in \widetilde{W}, m \in \mathbb{Z}, r \in \mathbb{Z}$$r \in \frac{1}{2}+\mathbb{Z}$,则$\varphi\left(I_{m}, G_{r}\right) = \lambda_{1}(m-2 r) H_{m+r} = \lambda_{1}\left[I_{m}, G_{r}\right]$.

    证明过程类似于引理4.

    定理1  如果φ$\widetilde{W}$上的超斜对称超双导子,则φ有如下形式:

    其中λ1λ2$\mathbb{C}$φ0是上的双线性映射.

     构造$\widetilde{W}$上的双线性映射φ0,满足如下条件:

    其中$m, n \in \mathbb{Z}, r \in \frac{\varepsilon}{2}+\mathbb{Z}, \varepsilon = 0, 1, (x, y)$是除了(LmLn)和(LmGr)的其它基对.

    易证φ0$\widetilde{W}$上的非内导子.若[xy] = 0,则由文献[3]的引理2.2及φ0的定义可得结论.若[xy]≠0,则由引理1-6,可得结论.

    定理2 设ψ$\widetilde{W}$上的超交换映射,则ψ有如下形式

    其中λ$\mathbb{C}$ψ0$\widetilde{W}$上的线性映射.从而$\widetilde{W}$上的线性超交换映射是非标准的.

     设ψ$\widetilde{W}$上的线性超交换映射.定义φ$\varphi : G \times G \longrightarrow G, \varphi(x, y) \longmapsto[\psi(x), y](x, y \in G)$.注意到φ保持G上的Z2-阶,而且

    φ相对第二个元素是超导子.因为ψ是线性超交换映射,所以[ψ(x),y] = (-1)|x||y|[xψ(y)],因此φ相对第一个元素也是超导子.所以φ$\widetilde{W}$上的超双导子.又由φ的定义,它是超斜对称的.这样,φ$\widetilde{W}$上的超斜对称的超双导子.由定理1,存在λ1λ2$\mathbb{C}$,使得

    φ的定义,因此

    引入$\widetilde{W}$上的辅助线性映射ψ0,满足如下条件:

    其中m$\mathbb{Z}$x是异于Lm的基.从而

    由(4)式有

    因为$\widetilde{W}$无中心,所以

    进一步地,在(5)式中取x = Gr,由[ψ(Gr),Gr] = 0,可得λ1 = 0.记λ2λ,从而定理2得证.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return