Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 4
Article Contents

Bo DENG, Xue-li SU, Xiao-min REN. On Sum-Balaban Index of Graphs Based on Contraction of Cycles[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 7-10. doi: 10.13718/j.cnki.xsxb.2019.04.002
Citation: Bo DENG, Xue-li SU, Xiao-min REN. On Sum-Balaban Index of Graphs Based on Contraction of Cycles[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 7-10. doi: 10.13718/j.cnki.xsxb.2019.04.002

On Sum-Balaban Index of Graphs Based on Contraction of Cycles

More Information
  • Received Date: 26/05/2018
    Available Online: 20/04/2019
  • MSC: O157.5

  • The Balaban index (also called \lt i \gt J \lt /i \gt index) of a connected graph \lt i \gt G \lt /i \gt is denoted as $ J\left( G \right) = \frac{m}{{m - n + 2}}\sum\limits_{uv \in E\left( G \right)} {\frac{1}{{\sqrt {{\sigma _G}\left( u \right){\sigma _G}\left( v \right)} }}} $ and the Sum-Balaban index of a connected graph \lt i \gt G \lt /i \gt is denoted as $ SJ\left( G \right) = \frac{m}{{m - n + 2}}\sum\limits_{uv \in E\left( G \right)} {\frac{1}{{\sqrt {{\sigma _G}\left( u \right) + {\sigma _G}\left( v \right)} }}} $ where \lt i \gt m \lt /i \gt , \lt i \gt n \lt /i \gt are the edge number and vertex number of \lt i \gt G \lt /i \gt , respectively, and \lt i \gt σ \lt /i \gt \lt sub \gt \lt i \gt G \lt /i \gt \lt /sub \gt ( \lt i \gt u \lt /i \gt ) (resp. \lt i \gt σ \lt /i \gt \lt sub \gt \lt i \gt G \lt /i \gt \lt /sub \gt ( \lt i \gt v \lt /i \gt )) denotes the total distance from \lt i \gt u \lt /i \gt to all the other vertices of \lt i \gt G \lt /i \gt . The Balaban index and the Sum-Balaban index have been widely used in various QSAR and QSPR studies. In this paper, we have proved that the Balaban index and the Sum-Balaban index increase by the contraction of cycles. Then we see the varieties of this operation and propose a new method for these two indices.
  • 加载中
  • [1] BALABAN AT.Topological Indices Based on Topological Distances in Molecular Graphs[J].Pure & ApplChem, 1983, 55(2):199-206.

    Google Scholar

    [2] DENG H Y.On the Sum-Balaban Index[J].MATCH Commun Math Comput Chem, 2011, 66(2):273-284.

    Google Scholar

    [3] DONG H W, GUO X F.Character of Graphs with Extremal Balaban Index[J].MATCH Commun Math Comput Chem, 2010, 63(3):799-812.

    Google Scholar

    [4] ZHOU B, TRINAJSTIC N.Bounds on the Balaban Index[J].CroatChemActa, 2008, 81(2):319-323.

    Google Scholar

    [5] SUN L L.Bounds on the Balaban Index of Trees[J].MATCH CommunMathComput Chem, 2010, 63(3):813-818.

    Google Scholar

    [6] DENG H Y.On the Balaban Index of Trees[J].MATCH Commun Math Comput Chem, 2011, 66(1):253-260.

    Google Scholar

    [7] GAO W, BABY S, SHAFIQ MK, et al.On Randic Indices of Single-Walled TiO2 Nanotubes[J]. UPB Scientific Bulletin(Series B), 2017, 79(1):93-100.

    Google Scholar

    [8] GAO W, JAMIL MK, JAVED A, et al.Sharp Bounds of the Hyper Zagreb Index on Acyclic, Unicylic and Bicyclic Graphs[J/OL]. Discrete Dynamics in Nature and Society, 2017, 2017: 1-5[2018-4-20]. https://doi.org/10.1155/2017/6079450.

    Google Scholar

    [9] 钟琴, 牟谷芳.矩阵Hadamard积谱半径的新上界[J].西南师范大学学报(自然科学版), 2018, 43(12):1-5.

    Google Scholar

    [10] 贾弯弯, 王正攀.Rees矩阵定理的简明刻画[J].西南大学学报(自然科学版), 2017, 39(12):86-89.

    Google Scholar

    [11] 钟琴, 周鑫.非负不可约矩阵Perron根的上界[J].西南大学学报(自然科学版), 2017, 39(10):75-78.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(1082) PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors

On Sum-Balaban Index of Graphs Based on Contraction of Cycles

Abstract: The Balaban index (also called \lt i \gt J \lt /i \gt index) of a connected graph \lt i \gt G \lt /i \gt is denoted as $ J\left( G \right) = \frac{m}{{m - n + 2}}\sum\limits_{uv \in E\left( G \right)} {\frac{1}{{\sqrt {{\sigma _G}\left( u \right){\sigma _G}\left( v \right)} }}} $ and the Sum-Balaban index of a connected graph \lt i \gt G \lt /i \gt is denoted as $ SJ\left( G \right) = \frac{m}{{m - n + 2}}\sum\limits_{uv \in E\left( G \right)} {\frac{1}{{\sqrt {{\sigma _G}\left( u \right) + {\sigma _G}\left( v \right)} }}} $ where \lt i \gt m \lt /i \gt , \lt i \gt n \lt /i \gt are the edge number and vertex number of \lt i \gt G \lt /i \gt , respectively, and \lt i \gt σ \lt /i \gt \lt sub \gt \lt i \gt G \lt /i \gt \lt /sub \gt ( \lt i \gt u \lt /i \gt ) (resp. \lt i \gt σ \lt /i \gt \lt sub \gt \lt i \gt G \lt /i \gt \lt /sub \gt ( \lt i \gt v \lt /i \gt )) denotes the total distance from \lt i \gt u \lt /i \gt to all the other vertices of \lt i \gt G \lt /i \gt . The Balaban index and the Sum-Balaban index have been widely used in various QSAR and QSPR studies. In this paper, we have proved that the Balaban index and the Sum-Balaban index increase by the contraction of cycles. Then we see the varieties of this operation and propose a new method for these two indices.

  • 对简单图G,分别用m(G)和n(G)表示G的边集和顶点集,其边数和点数分别记为m = m(G)和n = n(G). NG(v)表示顶点vG中的邻集.在图G中,顶点uv的距离记为dG(uv),顶点u到其它各顶点的距离之和记为σG(u),即$\sigma_{G}(u) = \sum\limits_{\omega \in V(G)} d_{G}(u, \omega)$.文献[1]介绍了一种关于连通图的新的拓扑指标,称为Balaban指标,或简称为J指标:

    类似地,Sum-Balaban指标[2]

    Balaban指标和Sum-Balaban指标都是非常有用的且具有良好性质的分子描述器,被广泛应用于QSAR和QSPR的各方面的研究[1-2].更多关于Balaban指标、Sum-Balaban指标和其它化学指标的研究,参考文献[3-11].

    U0 = Un(Sw1Sw2,…,Swg) (见图 1)是一个围长为g的单圈图,其中Swi是以圈上的点wi为中心的星图,对1≤ijg,满足|n(Swi)-n(Swj)|≤1.图U1(见图 2)是由U0经过收缩边w1w2,并把w1w2变成悬挂边得到的,即

    定理1  SJ(U0) < SJ(U1).

     从图U0到图U1可以看到,除了顶点w2外,其它顶点的距离之和都变小了.即对uV(U0)(或uV(U1)),有σU0(u)σU1(u),以及σU0(w2) < σU1(w2).因此,对任意边uvE(U0)(E(U1)),uvw2,有:

    对于顶点w1w2,由于圈的收缩,容易看到在U0w2与其它顶点的距离之和大于在U1w1与其它顶点的距离之和,即σU0(w2)>σU1(w1).因此,对于w2uE(U0),uDU0(w2)和w1uE(U1),有uDU1(w1)∩DU0(w2),其中DU1(w1)∩DU0(w2) = DU0(w2),则:

    由图U0可以看到,连接顶点w2的边有w1w2w2w3和悬挂边.接下来需要证明如下不等式:

    因为σU1(w1) < σU0(w2)和σU1(w3) < σU0(w3),则

    如果σU0(w1)+σU0(w2)≥σU1(w1)+σU1(w2),则由(5)式,不等式(4)成立.否则,

    U0的围长是偶数时,可以看出,对顶点w2,其增加的部分σU1(w2)-σU0(w2)等于顶点w1的减少部分σU0(w1)-σU1(w1),故

    因此,只需讨论U0的围长是奇数的情况.可以看到:

    从图U0到图U1,我们有:

    由Δ(U0) = dU0(w3)≥dU0(w2)和(7),(8)式,故σU1(w3) < σU0(w2).因此,由σU1(w1) < σU0(w1),可得

    不失一般性,设

    则存在非负整数k1,满足σU0(w2)+σU0(w3) = σ+k1.类似地,由(6)式和(9)式,存在正整数k2k3,分别满足σU1(w1)+σU1(w2) = σ+k2σU1(w1)+σU1(w3) = σk3.如果k1k2,则

    因此由(9)式,不等式(4)成立.否则

    U0的围长是奇数的条件下,讨论k2k3的关系.令:

    U0U1,可以看出:

    因此

    由Δ(U0) = dU0(w3) < Δ1-,以及(10)式和(11)式,则有k1 < k2 < k3.于是

    因为对x>0,$\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+s}}$是单调递减函数,其中s是正整数,k2 < s < k3+k1,则对σk3 < σ,我们有

    s增加时,不等式的左边会变大;当s减少时,不等式的左边会变小.因此

    故有:

    因此,不等式(4)成立.由(2),(3),(4)式和Sum-Balaban指标的定义,定理1成立.

    容易看出定理1对J(G)也成立.本文所提出的新的比较方法是基于圈收缩变换的.对于任意一个单圈图,经过圈收缩后,对于原图中的大部分顶点的距离之和都会变小,但存在唯一一个顶点w2的距离之和是变大的.考虑把图的边集划分为若干部分进行比较.特别地,对含有顶点w2的边,需要进行恰当的组合,再进行有效的比较.定理1采用的方法也可以推广到双圈图以及k(k≥3)圈图,有助于对这类化学指标进行值极刻画.

Figure (2)  Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return