Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 4
Article Contents

Shou-cai WANG, Shi-hai ZHAO, Zong-hong XIONG, et al. Multiple Solutions for a Class of Kirchhoff Type Equation Involving Neumann Boundary Condition[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 11-15. doi: 10.13718/j.cnki.xsxb.2019.04.003
Citation: Shou-cai WANG, Shi-hai ZHAO, Zong-hong XIONG, et al. Multiple Solutions for a Class of Kirchhoff Type Equation Involving Neumann Boundary Condition[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 11-15. doi: 10.13718/j.cnki.xsxb.2019.04.003

Multiple Solutions for a Class of Kirchhoff Type Equation Involving Neumann Boundary Condition

More Information
  • Corresponding author: Chang-mu CHU
  • Received Date: 08/07/2018
    Available Online: 20/04/2019
  • MSC: O175.25

  • Using the mountain pass theorem and the minimization arguments, a class of Kirchhoff type equation has been studied involving Neumann boundary condition and obtain the multiplicity of nontrivial solutions.
  • 加载中
  • [1] PAPAGEORGIOU N S, RADULESCU V D. Multiplicity of Solutions for Resonant Nuemann Problems with an Indefinite and Unbounded Potential[J].Transac of the Ameri Mathe Society, 2014, 367(12):8723-8756. doi: 10.1090/tran/2015-367-12

    CrossRef Google Scholar

    [2] PAPAGEORGIOU N S, RADULESCUV D. Nuemann Problems with Indefinite and Unbounded Potential and Concave Terms[J].ProcAmerMathSoci, 2015, 143(11):4803-4816.

    Google Scholar

    [3] 赵荣胜, 唐春雷.一类Kirchhoff型方程解的多重性[J].西南大学学报(自然科学版), 2015, 37(2):60-63.

    Google Scholar

    [4] MAO A M, ZHANG Z T.Sign-Changing and Multiple Solutions of Kirchhoff Type Problems without the P.S.Condition[J]. Nonlinear Anal, 2009, 70(3):1275-1287. doi: 10.1016/j.na.2008.02.011

    CrossRef Google Scholar

    [5] CHEN S J, LI L. Multiple Solutions for the Nonhomogeneous Kirchhoff Equation on $\mathbb{R}^{\mathbb{N}} $[J].Nonlinear Anal, 2013, 14(2):1477-1486.

    $\mathbb{R}^{\mathbb{N}} $" target="_blank">Google Scholar

    [6] 严忠权, 柳鸠.具有一般临界增长的自治的Kirchhoff型方程正基态解的存在性[J].西南师范大学学报(自然科学版), 2018, 43(2):32-35.

    Google Scholar

    [7] 王继禹, 贾秀玲, 段誉, 等.一类具有临界增长项的Kirchhoff型方程正解的研究[J].西南大学学报(自然科学版), 2016, 38(12):61-66.

    Google Scholar

    [8] 任正娟, 商彦英.带有临界指数的Kirchhoff方程正解的存在性[J].西南大学学报(自然科学版), 2016, 38(4):78-84.

    Google Scholar

    [9] 曾兰, 唐春雷.带有临界指数的Kirchhoff型方程正解的存在性[J].西南师范大学学报(自然科学版), 2016, 41(4):29-34.

    Google Scholar

    [10] 刘选状, 吴行平, 唐春雷.一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J].西南大学学报(自然科学版), 2015, 37(6):54-59.

    Google Scholar

    [11] PAPAGEORGIOU N S, RADULESCUV D. Semilinear Neumann Problems with Indefinite and Unbounded Potential and Crossing Nonlinearity[J].ProcAmerMathSoci, 2013, 595(10):293-315.

    Google Scholar

    [12] MOTREANU D, PAPAGEORGIOU N S. Multiple Solutions for Nonlinear Neumann Problems Driven by a Nonhomogeneous Differential Operator[J].ProcAmerMathSoci, 2011, 139(10):3527-3535.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(793) PDF downloads(107) Cited by(0)

Access History

Multiple Solutions for a Class of Kirchhoff Type Equation Involving Neumann Boundary Condition

    Corresponding author: Chang-mu CHU

Abstract: Using the mountain pass theorem and the minimization arguments, a class of Kirchhoff type equation has been studied involving Neumann boundary condition and obtain the multiplicity of nontrivial solutions.

  • 考虑如下带Neumann边界条件的Kirchhoff型方程:

    其中:$\Omega \subset \mathbb{R}^{N} $是有界光滑区域;n为外法向的单位向量;b>0,1 < q < 2,λ>0为参数;β(x)∈Ls(Ω),$ s>\frac{N}{2} ; f : \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$满足Carathéodory条件.

    b=0时,方程(1)为一类带Neumann边界条件的半线性椭圆方程,文献[1]利用临界点理论和Morse理论获得了在λ=0的情形下该类方程非平凡解的多重性,文献[2]利用变分原理、截断和扰动技术及临界群理论获得了在λ>0的情形下该类方程的多重解.

    β(x)≡0时,方程(1)为一类经典的Kirchhoff型方程,文献[3]利用山路引理和极小化理论获得了该方程至少存在3个非平凡解,文献[4]应用极小极大原理研究了该类方程在λ=0时的多重变号解.关于Dirichlet边值条件,许多学者也获得了该类方程非平凡解的存在性和多重性(见文献[5-10]).

    记:

    定义τ$H^{1}(\Omega) \longrightarrow \mathbb{R} $,且对$ \forall u \in H^{1}(\Omega)$,有

    显然,$\tau \in C^{1}\left(H^{1}(\Omega), \mathbb{R}\right) $.

    由文献[2]知,对$ \forall u \in H^{1}(\Omega)$,存在$\hat{c} \in(0, 1), \gamma>0 $,使得

    由文献[11]知,方程(1)对应的特征值序列为$\left\{\hat{\lambda}_{k}\right\}_{k \geqslant 1} $,且当k→+∞时,$ \hat{\lambda}_{k} \rightarrow+\infty$.特别地,

    $ \hat{u}_{1}$$ \hat{\lambda}_{1}$对应的满足且正的特征函数,$ \left\|\hat{u}_{1}\right\|_{2}=1$.方程(1)对应的泛函为

    其中

    显然,$ I_{\lambda} \in C^{1}\left(H^{1}(\Omega), \mathbb{R}\right)$,且对$\forall \varphi \in H^{1}(\Omega) $,有

    $ f : \overline{\Omega} \times \mathbb{R}^{1} \longrightarrow \mathbb{R}^{1}$是Carathéodory函数,对$ \forall x \in \Omega, f(x, 0)=0$.进一步假设:

    (F0) $\beta(x) \in L^{s}(\Omega), s>\frac{N}{2} $

    (F1) 对$ \forall(x, t) \in \Omega \times \mathbb{R}$,存在$a(x) \in L^{\infty}(\Omega)_{+} $,使得

    (F2) 存在v(x)∈L(Ω)满足$ $,且∀xΩ

    (F3) 存在η0$\hat{\eta}_{0} \in L^{\infty}(\Omega) $,使得$ \hat{\lambda}_{1} \leqslant \eta_{0}(x)$Ω上几乎处处成立,$ \eta_{0}(x) \neq \hat{\lambda}_{1}$,且对∀xΩ,有

    引理1[11]   假设v(x)∈L(Ω),使得$ v(x) \leqslant \hat{\lambda}_{1}$Ω上几乎处处成立,且$ v(x) \neq \hat{\lambda}_{1}$,则存在c0>0,使得对∀uH1(Ω),有

    引理2   假设(F0),(F1),(F2)成立,则当λ>0时,泛函Iλ是强制的.

      由(F1)和(F2)知,对∀ε>0,存在cε>0,使得对$ \forall(x, u) \in \Omega \times \mathbb{R}$,有

    由(3)式和(4)式知,对∀uH1(Ω),有

    由引理1及H1(Ω)中范数的性质,有

    ε∈(0,c0),可得当‖u‖→+∞时,Iλ(u)→+∞.故Iλ是强制的.

    引理3   假设(F0),(F1)成立,则当λ>0时,泛函IλH1(Ω)中满足(PS)条件.

      对任一实数c,令{un}为H1(Ω)中的(PS)c序列,且当n→∞时,

    由引理2知,{un}在H1(Ω)中有界.因此,存在{un}的子列(仍记为{un})与uH1(Ω),使得{un}在H1(Ω)中弱收敛于u,在L2(Ω)中收敛于u,且在Ω上几乎处处收敛于u.由(2)-(5)式知

    由(F1)和Hölder不等式知

    由{un}在L2(Ω)中收敛于u知,当n→∞时,‖unu2→0.因此,当n→∞时,有:

    由(5)式知,当n→∞时,有

    因为{un}在H1(Ω)中弱收敛于u,且{un}有界,所以当n→∞时,有

    由(5)-(9)式知,当n→∞时,‖unu‖→0.故IλH1(Ω)中满足(PS)条件.

    引理4   假设(F0),(F1),(F3)成立,则存在λ0>0,t1>0,使得当λ∈(0,λ0)时,$I_{\lambda}\left(t_{1} \hat{u}_{1}\right)<0 $.

      由(F1),(F3)知,对∀ε>0,存在c1>0,r>2,使得对$ \forall(x, u) \in \Omega \times \mathbb{R}$,有

    t≠0时,有

    $\hat{u}_{1}>0 $,(F3)和H1(Ω)中范数的性质知

    ε∈(0,ε*),则存在c2c3>0,使得

    r>2知,存在λ0>0,t1>0,使得当λ∈(0,λ0)时,$I_{\lambda}\left(t_{1} \hat{u}_{1}\right)<0 $.

    引理5   假设(F0),(F1),(F3)成立,则当λ>0时,u=0是Iλ的局部极小点.

      由(F1),(F3)知,存在c4>0,使得对$ \forall(x, u) \in \Omega \times \mathbb{R}$,有

    对∀uH1(Ω),有

    其中$ c_{5}=c_{4}+\frac{\gamma}{2}>0$.当$ \frac{\lambda u^{\sigma-2}}{q} \geqslant c_{5}$,即$ u \leqslant\left(\frac{\lambda}{q c_{5}}\right)^{\frac{1}{2-q}}$时,有

    所以u=0是IλC1(Ω)中的局部极小点.由文献[12]知,u=0是IλH1(Ω)中的局部极小点.

    定理1   假设(F0)-(F3)成立,则存在λ0>0,使得当λ∈(0,λ0)时,方程(1)在H1(Ω)中至少有两个非平凡解.

      由引理2知泛函Iλ是强制的.因此,利用Sobolev嵌入定理及范数的弱下半连续性知Iλ是弱下半连续的.由Weierstrass定理,存在u0H1(Ω),使得

    由引理4有$ I_{\lambda}\left(t_{1} \hat{u}_{1}\right)<0$,所以Iλ(u0) < 0=Iλ(0).因此,u0≠0.由引理5知,存在足够小的ρ∈(0,1),使得

    由引理4和(10)式知,Iλ满足山路引理条件.所以存在$ \hat{u} \in H^{1}(\Omega)$,使得:

    由(10)式和(11)式知,$ \hat{u} \notin\left\{0, u_{0}\right\}$.因此,方程(1)在H1(Ω)中至少存在两个非平凡解.

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return