Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 4
Article Contents

Jiu LIU, Zhong-quan YAN. On Positive Solution for Kirchhoff Type Equation with the Hardy Potential and Critical Exponent[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 37-40. doi: 10.13718/j.cnki.xsxb.2019.04.008
Citation: Jiu LIU, Zhong-quan YAN. On Positive Solution for Kirchhoff Type Equation with the Hardy Potential and Critical Exponent[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(4): 37-40. doi: 10.13718/j.cnki.xsxb.2019.04.008

On Positive Solution for Kirchhoff Type Equation with the Hardy Potential and Critical Exponent

More Information
  • Received Date: 09/07/2018
    Available Online: 20/04/2019
  • MSC: O177.91

  • According to the results of the semilinear elliptic equation in the whole space, by using the rescaling argument, analysis skills and careful calculation, the positive solution for a Kirchhoff type equation with the Hardy potential and critical exponent is obtained.
  • 加载中
  • [1] LIU J, LIU T, PAN H L.A Result on a Non-Autonomous Kirchhoff Type Equation Involving Critical Term[J].Appl Math Lett, 2018, 85:82-87.

    Google Scholar

    [2] XIEQ L, MA S W, ZHANG X.Bound State Solutions of Kirchhoff Type Problems with Critical Exponent[J].J Differential Equations, 2016, 261(2):890-924.

    Google Scholar

    [3] AZZOLLINI A.The Elliptic Kirchhoff Equation in $\mathbb{R}$N Perturbed by a Local Nonlinearity[J].Differential Integral Equations, 2012, 25(5-6):543-554.

    Google Scholar

    [4] AZZOLLINI A.A Note on the Elliptic Kirchhoff Equation in $\mathbb{R}$N Perturbed by a Local Nonlinearity[J].Commun Contemp Math, 2015, 17(4):1-5.

    Google Scholar

    [5] LIU J, LIAO J F, TANG C L.Positive Solutions for Kirchhoff-Type Equations with Critical Exponent in $\mathbb{R}$N[J].J Math Anal Appl, 2015, 429(2):1153-1172.

    Google Scholar

    [6] LIU J, YAN Z Q, ZHENGZ B.A Result on a Class of Elliptic Equations Involving Kirchhoff Type Nonlocal Term[J]. Comput Math Appl, 2017, 73(2):355-361.

    Google Scholar

    [7] 刘选状, 吴行平, 唐春雷.一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J].西南大学学报(自然科学版), 2015, 37(6):54-59.

    Google Scholar

    [8] 严忠权, 柳鸠.具有一般临界增长的自治的Kirchhoff型方程正基态解的存在性[J].西南师范大学学报(自然科学版), 2018, 43(2):32-35.

    Google Scholar

    [9] 曾兰, 唐春雷.带有临界指数的Kirchhoff型方程正解的存在性[J].西南大学学报(自然科学版), 2016, 41(4):29-34.

    Google Scholar

    [10] TERRACINI S.On Positive Entire Solutions to a Class of Equations with a Singular Coefficient and Critical Exponent[J]. Adv Differential Equations, 1996, 1(2):241-264.

    Google Scholar

    [11] FELLI V, TERRACINI S.Elliptic Equations with Multi-Singular Inverse-Square Potentials and Critical Nonlinearity[J]. Comm Partial Differential Equations, 2006, 31(1-3):469-495.

    Google Scholar

    [12] TALENTI G.Best Constant in Sobolev Inequality[J].Ann Mat Pura Appl, 1976, 110(4):353-372.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(789) PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

On Positive Solution for Kirchhoff Type Equation with the Hardy Potential and Critical Exponent

Abstract: According to the results of the semilinear elliptic equation in the whole space, by using the rescaling argument, analysis skills and careful calculation, the positive solution for a Kirchhoff type equation with the Hardy potential and critical exponent is obtained.

  • 考虑如下Kirchhoff型方程

    其中a>0,b>0,并且$V(x) = - \frac{\gamma }{{|x{|^2}}}$是Hardy位势.

    如果$V \in L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right)$,结合一些其它的假设,文献[1]得到了方程(1)的基态解,文献[2]得到了方程(1)的束缚态解.但Hardy位势V显然不属于$L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right)$,因此本文将在这一位势条件下考虑方程(1)的解的存在性.对Kirchhoff型方程其它的一些结果请参见文献[3-9].

    a=1,b=0并且$\gamma=\lambda \in\left(0, \frac{1}{4}\right)$时,方程(1)退化到下列半线性椭圆方程:

    对任意的$\lambda \in\left(0, \frac{1}{4}\right)$,文献[10-11]得出方程(2)的所有正解构成下列集合

    其中:

    特别地,w(0)(x)是最佳Sobolev嵌入常数

    的达到函数[12].对任意的wμλ(x)∈Zλ,由本文中引理1知

    事实上,由(3)式得出

    为了得到方程(1)的正解,首先考虑下列方程:

    其中a>0,b>0,并且

    利用伸缩讨论,得到下面定理:

    定理1  假设a>0,b>0,并且$\lambda \in\left(0, \frac{1}{4}\right)$,那么对任意的wμλ(x)∈Zλwμλ(Tx)是方程(5)的正解.

    利用定理1,我们得出本文的主要结果:

    定理2  假设a>0,b>0,并且$\gamma \in \left({0, {A_{a, b, \frac{1}{4}}}} \right)$,那么存在$\lambda \in\left(0, \frac{1}{4}\right)$,使得γ=Aabλ,并且对任意的wμλ(x)∈Zλwμλ(Tx)是方程(1)的正解.

    注1  通过计算,由(3),(4)和(6)式知

    注2  定理2补充了文献[1-2]的结果.

    引理1  对任意的wμλ(x)∈Zλ,(3)式成立.

      对任意的wμλ(x)∈Zλ,我们有

    由3维球坐标变换和下列积分公式

    因此(3)式成立.

    定理1的证明  设ω(x)=wμλ(x)∈Zλ,那么

    u(x)=ω(Tx),通过计算,我们有:

    其中T在(7)式中被定义,并且

    因此我们得到

    这说明u是方程(5)的正解.

    定理2的证明  令fab(λ)=Aabλ,那么fab(0)=0,并且

    因为关于λ的函数λαλ2λ2αλ4λ2αλ2在区间$\left(0, \frac{1}{4}\right)$上都是单调递增的,所以fab(λ)在区间$\left(0, \frac{1}{4}\right)$上是严格单调递增的.因此对任意的γ∈(0,Aab,14),存在唯一的$\lambda \in\left(0, \frac{1}{4}\right)$使得γ=Aabλ.由定理1知,wμλ(Tx)是方程(1)的正解.

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return