Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 6
Article Contents

Yi-hui LAO, Yi-qian PAN. Characterization of Quantum Channels Preserving von Neumann Entropy in Bipartite Systems[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(6): 31-36. doi: 10.13718/j.cnki.xsxb.2019.06.008
Citation: Yi-hui LAO, Yi-qian PAN. Characterization of Quantum Channels Preserving von Neumann Entropy in Bipartite Systems[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(6): 31-36. doi: 10.13718/j.cnki.xsxb.2019.06.008

Characterization of Quantum Channels Preserving von Neumann Entropy in Bipartite Systems

More Information
  • Received Date: 23/07/2018
    Available Online: 20/06/2019
  • MSC: O177.1

  • Let Hm be the complex Hilbert space with dim H=m, S(HmHn) be all the quantum states acting on complex bipartite Hilbert space HmHn and Ssep(HmHn) be the convex set of comparable quantum states, ϕ:S(HmHn)→S(HmHn) be quantum channels and ϕ(Ssep(HmHn))=Ssep(HmHn). Then ϕ satisfies von Neumann entropy S(tρ+(1-t)σ)=S((ρ)+(1-t)ϕ(σ)), ∀t∈[0, 1], ∀ρ, σSsep(HmHn) if and only if there exist unitary operators Ūm, Vn acting on Hm, Hn respectively such that ϕ(ρ)=(ŪmVn)ρ(ŪmVn)*, ∀ρSsep(HmHn).
  • 加载中
  • [1] FOSNER A, HUANG Z J, LI C K, et al.Linear Preservers and Quantum Information Science[J]. Linear and Multilinear Algebra, 2013, 61(10):1377-1390. doi: 10.1080/03081087.2012.740029

    CrossRef Google Scholar

    [2] FOSNER A, HUANG Z J, LI C K, et al.Linear Maps Preserving Ky Fan Norms and Schatten Norms of Tensor Product of Matrices[J].SIAM Journal on Matrix Analysis and Applications, 2013, 34(2):673-685. doi: 10.1137/120891794

    CrossRef Google Scholar

    [3] FRIEDLAND S, LI C K, POON Y T, et al.The Automorphism Group of Separable States in Quantum Information Theory[J].Journal of Mathematical Physics, 2011, 52(4):042203(1-8).

    Google Scholar

    [4] HOU J C, QI X F. Linear Maps Preserving Separability of Pure States[J]. Linaer Algebra and its Applications, 2013, 439(5):1245-1257. doi: 10.1016/j.laa.2013.04.007

    CrossRef Google Scholar

    [5] HE K, YUAN Q, HOU J C.Entropy-Preserving Maps on Quantum States[J]. Linaer Algebra and its Applications, 2015, 467(15):243-253.

    Google Scholar

    [6] KARDERM, PETEK T.Maps on States Preserving Generalized Entropy of Convex Combinations[J]. Linaer Algebra and its Applications, 2017, 532(1):86-98.

    Google Scholar

    [7] HOU J C, LIU L.Quantum Measurement and Maps Preserving Convex Combinations of Separable States[J]. Journal of Physics A:Mathematical and Theoretical, 2012, 45(20):205305(1-13). doi: 10.1088/1751-8113/45/20/205305

    CrossRef Google Scholar

    [8] NIELSEN M A, CHUANGI L.Quantum Computation and Quantum Information[M].Cambridge:Cambridge University Press, 2000:500-527.

    Google Scholar

    [9] LIY, BUSCHP.Von Neumann Entropy and Majorization[J].Journal of Mathematical Analysis and Applications, 2013, 408(1):384-393. doi: 10.1016/j.jmaa.2013.06.019

    CrossRef Google Scholar

    [10] HE K, HOU J C, LI C K.Ageometric Characterization of Invertible Quantum Measurement Maps[J].Journal of Functional Analysis, 2012, 264(2):464-478.

    Google Scholar

    [11] 邹世乾, 沈真, 曾凡金, 等.基于腔QED系统的量子相位门设计[J].西南师范大学学报(自然科学版), 2015, 40(3):44-47.

    Google Scholar

    [12] 马磊, 曾春娜.曲率的熵不等式的一种新证明[J].西南大学学报(自然科学版), 2015, 37(4):27-29.

    Google Scholar

    [13] 张龙涛, 孙玉秋.基于模糊熵改进的直方图匹配算法的研究[J].西南大学学报(自然科学版), 2016, 38(4):124-129.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(890) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Characterization of Quantum Channels Preserving von Neumann Entropy in Bipartite Systems

Abstract: Let Hm be the complex Hilbert space with dim H=m, S(HmHn) be all the quantum states acting on complex bipartite Hilbert space HmHn and Ssep(HmHn) be the convex set of comparable quantum states, ϕ:S(HmHn)→S(HmHn) be quantum channels and ϕ(Ssep(HmHn))=Ssep(HmHn). Then ϕ satisfies von Neumann entropy S(tρ+(1-t)σ)=S((ρ)+(1-t)ϕ(σ)), ∀t∈[0, 1], ∀ρ, σSsep(HmHn) if and only if there exist unitary operators Ūm, Vn acting on Hm, Hn respectively such that ϕ(ρ)=(ŪmVn)ρ(ŪmVn)*, ∀ρSsep(HmHn).

  • 量子态叫作密度矩阵,是作用在复希尔伯特空间上的半正定迹1矩阵.量子态ρ是纯态当且仅当ρ2=ρ,即ρ是秩1投影.若ρ2ρ,则ρ是混合态.复希尔伯特空间H上的所有量子态记为S(H),它是个凸集,所有纯态记为Pur(H),显然Pur(H)是S(H)的子集.在量子信息理论中,H=H1$\otimes $H2叫双体系统,其中H1H2都是有限维复希尔伯特空间.对于ρS(H1$\otimes $H2),如果ρ可以写成$\mathit{\boldsymbol{\rho }} = \sum\limits_{i = 1}^n {{p_i}} {\mathit{\boldsymbol{\rho }}_i} \otimes {\mathit{\boldsymbol{\sigma }}_i}$,其中ρiS(H1),σiS(H2),$\sum\limits_{i = 1}^n {{p_i}} = 1$pi≥0,则这时就说量子态ρ可分,否则量子态ρ就是纠缠的.下面分别用符号Ssep(Hm$\otimes $Hn)和Pursep(Hm$\otimes $Hn)表示双体系统Hm$\otimes $Hn上的所有可分量子态和可分量子纯态. M(Hn)表示所有n阶方阵,对于AM(Hn),用A*表示矩阵A的共轭转置.

    文献[1]对量子信息科学的线性保持问题作了一个概述.很快,文献[2]也找到了保持KY FAN范数和SCHATTEN范数不变的矩阵张量积之间的线性变换的结构形式.文献[3]也研究了相同的定义和问题.接着,文献[4]把文献[3]的结果推广到无限维希尔伯特空间.这些成果研究的算子张量积之间的映射都是线性的.文献[5-6]研究的是关于量子测量(如冯诺依曼熵、Tsallis熵)单体系统上的非线性映射.文献[7]刻画了一个作用在双体量子系统H1$\otimes $H2里的所有可分态上并保持凸组合的双射的结构.现在的目的就是借助von Neuamnn熵的性质来研究一个保持von Neumann熵量子信道的结构.对于ρS(H),如果λiρ的特征值,von Neumann熵S(ρ)的定义如下[8]$S(\mathit{\boldsymbol{\rho }}) = - \sum\limits_i {{\lambda _i}} \log \left({{\lambda _i}} \right)$λi≥0.规定0log 0=0,对数的底数通常取2.一个量子信道是保迹完全正线性映射ΦM(Hm)$$M(Hn)当且仅当有表达式Φ(X)=$\sum\limits_i {{\mathit{\boldsymbol{A}}_i}} \mathit{\boldsymbol{XA}}_i^*$,其中Aim×n阶矩阵、$\sum\limits_i {\mathit{\boldsymbol{A}}_i^*} {\mathit{\boldsymbol{A}}_i} = {\rm{i}}{d_m}$.量子信道总是仿射.近年来有关量子熵、量子相位门的研究可见文献[9-13].下面是本文的主要结果:

    定理1  设HmHn分别是维数为mn的复希尔伯特空间,ϕS(Hm$\otimes $Hn) S(Hm$\otimes $Hn)是量子信道,且ϕ(Ssep(Hm$\otimes $Hn))= Ssep(Hm$\otimes $Hn).那么对$\forall $t∈[0, 1]和$\forall $ρσSsep(Hm$\otimes $Hn),S(tρ+(1-t)σ)=S(tϕ(ρ)+(1-t)ϕ(σ))当且仅当在HmHn上分别存在酉矩阵或共轭酉矩阵UmVn,使得ϕ(ρ)=(Um$\otimes $ Vn)ρ (Um$\otimes $Vn)*$\forall $ρSsep(Hm$\otimes $Hn).

    对于P∈Pur(Hm)和Q∈Pur(Hn),分别记:

    引理1  设HmHn分别是维数为mn的复希尔伯特空间,ϕS(Hm$\otimes $Hn)$\to $S(Hm$\otimes $Hn)是量子信道,且$ϕ$(Ssep(Hm$\otimes $Hn))=Ssep(Hm$\otimes $Hn).如果对$\forall $ρσSsep(Hm$\otimes $Hn)和$\forall $t∈[0, 1],有S(tρ+(1-t)σ)=S(tϕ(ρ)+(1-t)ϕ(σ)),那么下面结论之一成立:

    (ⅰ)对$\forall $P∈Pur(Hm),至少存在一个P∈Pur(Hm),使得ϕ(LP)$\subseteq $LP

    (ⅱ)对$\forall $P∈Pur(Hm),至少存在一个Q ∈Pur(Hn),使得ϕ(LP)$\subseteq $RQ.

      由文献[5]知ϕ(Pursep(Hm$\otimes $Hn))=Pursep(Hm$\otimes $Hn).于是对于任意可分纯态P$\otimes $Q∈Pursep(Hm$\otimes $Hn),都至少存在一个可分纯态P$\otimes $Q∈Pursep(Hm$\otimes $Hn),使得ϕ(P$\otimes $Q)=P$\otimes $Q.

    首先固定P∈Pur(Hm),对$\forall $Q1Q2∈Pur(Hn)(Q1Q2),由文献[5]知,存在纯态Pi∈Pur(Hm),Qi∈Pur(Hn)(i=1,2),使得ϕ(P$\otimes $Q1)=P1$\otimes $Q1ϕ(P$\otimes $Q2)=P2$\otimes $Q2.

    因为量子信道总是作用在量子态上的仿射,即ϕ是双射,且

    则如果P$\otimes $Q1P$\otimes $Q2,有P1$\otimes $Q1P2$\otimes $Q2,而且

    根据文献[7]的引理2知Q1Q2线性相关,或者P1P2线性相关.

    Q1Q2线性相关,因为PiQi都是纯态,而且P1$\otimes $Q1P2$\otimes $Q2,所以Q1= Q2,且P1P2线性无关.记Q1= Q2=Q,则ϕ(P$\otimes $Q1)=P1$\otimes $Qϕ(P$\otimes $Q2)=P2$\otimes $Q.现在,对$\forall $Q∈Pur(Hn),设ϕ(P$\otimes $Q)=P$\otimes $$\overline{\mathit{\boldsymbol{\overline Q}}} $,这时P至少与P1P2其中一个线性无关,否则将会出现P1=P2.不妨设PP1线性无关.注意到文献[7]的引理2和等式

    得到Q=$\overline{\mathit{\boldsymbol{\overline Q}}} $.于是对于某一固定的P∈Pur(Hm),存在Q∈Pur(Hn),使得ϕ(P$\otimes $Q)∈RQ,这时有ϕ(LP)$\subseteq $RQ.

    P1P2线性相关,同理可得到对于某一固定的P∈Pur(Hm),存在P∈Pur(Hm),使得ϕ(LP)$\subseteq $LP.

    现在有结论:对于固定的P0∈Pur(Hm),存在$\overline {{\mathit{\boldsymbol{P}}_0}} $∈Pur(Hm),使得ϕ(LP0)$\subseteq $LP0.接着用这个结论证明:对$\forall $P∈Pur(Hm),存在P∈Pur(Hm),使得ϕ(LP)$\subseteq $LP.

    记:

    AB=Pur(Hm).假设B$\emptyset $,那么对$\forall$Q∈Pur(Hn),都存在P1BQ∈Pur(Hm),使得ϕ(P1$\otimes $Q)=$\overline {{\mathit{\boldsymbol{P}}_Q}} $$\otimes $Q.又因为ϕ(LP0)$\forall $LP0,所以

    由于$\overline {{\mathit{\boldsymbol{P}}_\mathit{\boldsymbol{Q}}}} $$\overline {{\mathit{\boldsymbol{Q}}_{{\mathit{\boldsymbol{P}}_0}}}} $的任意性,有$\overline {{\mathit{\boldsymbol{P}}_0}} $=$\overline {{\mathit{\boldsymbol{P}}_\mathit{\boldsymbol{Q}}}} $Q=$\overline {{\mathit{\boldsymbol{Q}}_{{\mathit{\boldsymbol{P}}_0}}}} $.于是

    这与ϕ是单射矛盾.所以B=$\emptyset $,即对$\forall $P∈Pur(Hm),存在P∈Pur(Hm),使得ϕ(LP)$\subseteq $LP.同理可证:当固定P0∈Pur(Hm)时,存在Q0 ∈Pur(Hn),使得ϕ(LP0)$\subseteq $RQ0时,对$\forall $P∈Pur(Hm),存在Q∈Pur(Hn),使得ϕ(LP)$\subseteq $RQ成立.

    引理2  如果映射ϕSsep(Hm$\otimes $Hn)$\to $Ssep(Hm$\otimes $Hn)所满足的条件与引理1的一样,那么下面结论之一成立:

    (ⅰ)对$\forall $Q∈Pur(Hn),至少存在一个Q∈Pur(Hn),使得$\subseteq $(RQ)$\subseteq $RQ

    (ⅱ)对$\forall $Q∈Pur(Hn),至少存在一个P∈Pur(Hm),使得ϕ(RQ)$\subseteq $LP.

    引理3  如果映射ϕSsep(Hm$\otimes $Hn)$\to $Ssep(Hm$\otimes $Hn)所满足的条件与引理1的一样,那么下面结论之一成立:

    (ⅰ)引理1(ⅰ)和引理2(ⅰ)都成立;

    (ⅱ)引理1(ⅱ)和引理2(ⅱ)都成立.

      如果引理1(ⅰ)和引理2(ⅱ)同时成立,则对$\forall $P∈Pur(Hm)和Q∈Pur(Hn),分别存在P$\overline{\mathit{\boldsymbol{\overline P}}} $∈Pur(Hm),使得ϕ(LP)$\subseteq $LPϕ(RQ)$\subseteq $L${\overline{\mathit{\boldsymbol{\overline P}}}}$同时成立,于是

    又因为Q是任意的,则有tP+(1-t)P=P.注意到P是纯态,而且P$\overline{\mathit{\boldsymbol{\overline P}}} $是不同纯态,所以

    矛盾.所以引理1(ⅰ)和引理2(ⅱ)不能同时成立.同理,引理1(ⅱ)和引理2(ⅰ)也不能同时成立.

    定理1的证明  先假设引理3(i)成立,即对$\forall $P∈Pur(Hm),Q∈Pur(Hn),有ϕ(LP)$\subseteq $LPϕ(RQ)$\subseteq $RQ.也就是对ϕP∈Pur(Hm),存在纯态τ1(P),τ2(PQ)(τ2P有关),使得等式ϕ(P$\otimes $Q)=τ1(P)$\otimes $τ2(PQ)对$\forall $Q∈Pur(Hn)成立.

    为了证明τ2(PQ)与P无关,现在假设Pur(Hm)中有两个不同的P1P2,于是:

    这时,要么τ2(P1Q)与τ2(P2Q)线性相关,要么τ1(P1)与τ1(P2)线性相关.

    如果τ2(P1Q)与τ2(P2Q)线性相关,则τ2(P1Q)=τ2(P2Q),这时τ2P无关;如果τ1(P1)与τ1(P2)线性相关,则有

    这时加上条件ϕ(RQ)$\subseteq $RQ,有

    于是2(P1Q)+(1-t)τ2(P2Q)=τ2(Q).又因为τ2(P1Q),τ2(P2Q),τ2(Q)全是纯态,所以

    这样就证明了对于任意可分态P$\otimes $Q,存在两个双射τ1:Pur(Hm)$\to $Pur(Hm),τ2:Pur(Hn)$\to $Pur(Hn) (因为ϕ是双射),使得

    当引理3(ⅱ)成立时,同理可证对于任意可分态P$\otimes $Q,存在两个双射τ1:Pur(Hn)$\to $Pur(Hm),τ2:Pur(Hm)$\to $Pur(Hn)使得

    接着断言:保von Neumann熵的映射ϕ是保持正交的,即对$\forall $ρσSsep(Hm$\otimes $Hn),若ρσ= 0,则ϕ(ρ)ϕ(σ)= 0.事实上,在等式S(tρ+(1-t)σ)=S(tϕ(ρ)+(1-t)ϕ(σ))中令t=1,于是对$\forall $ρSsep(Hm$\otimes $Hn),有S(ρ)=S(ϕ(ρ)).由文献[8]知

    也就是ϕ(ρ)ϕ(σ)= 0ϕ是保正交的.

    因为dim(Hm$\otimes $Hn) < ∞,于是Hm上的任意一个量子态ρ都可以写成$\mathit{\boldsymbol{\rho }} = \sum\limits_{i = 1}^m {{\lambda _i}} {\mathit{\boldsymbol{P}}_i}$,其中$\sum\limits_{i = 1}^m {{\lambda _i}} = 1$λi≥0,Pi∈Pur(Hm)(i=1,…,m).在Pur(Hn)上取Q,注意到:

    以及等式(1),由文献[8]有

    于是由文献[9]知,存在酉矩阵或共轭酉矩阵W,使得

    不失一般性,令W = Imn,其中ImnHm$\otimes $Hn上的单位矩阵,则

    定义${\tau _{1Q}}(\mathit{\boldsymbol{\rho }}) = \sum\limits_{i = 1}^m {{\lambda _i}} {\tau _{1i}}\left({{\mathit{\boldsymbol{P}}_i}} \right)$, 显然τ1Q(ρ)是从S(Hm)到S(Hm)的映射,则

    在等式(3)里,若$\mathit{\boldsymbol{\rho }} = \frac{{{\mathit{\boldsymbol{I}}_m}}}{m}$(Im是单位矩阵),则${\tau _{1Q}}(\mathit{\boldsymbol{\rho }}) = \frac{{{\mathit{\boldsymbol{I}}_m}}}{m}$.事实上,由文献[5, 8],并注意到S(ϕ(ρ$\otimes $σ))= S(ρ$\otimes $σ)且τ2(Q)是纯态,得

    在等式(3)里,映射τ1QS(Hm)$\to $S(Hm)满足等式

    事实上,

    由等式(4)和文献[5]知,在S(Hm)上存在酉矩阵或共轭酉矩阵UQ,使得τ1Q(ρ)= UQρ(UQ)*.这时等式(3)就可以写成

    等式(5)中的UQQ无关.事实上,在Pur(Hn)中取两个不同的量子态Q1Q2,使得对于ρS(Hm),有${\tau _{1{Q_i}}}(\mathit{\boldsymbol{\rho }}) = {\mathit{\boldsymbol{U}}_{{Q_i}}}\mathit{\boldsymbol{\rho }}{\left({{\mathit{\boldsymbol{U}}_{{Q_i}}}} \right)^*}(i = 1, 2)$.对于任意的P∈Pur(Hm),由等式(1),(3),(5)有:

    又因为对$\forall $P∈Pur(Hm),有ϕ(LP)$\subseteq $LP,于是τ1(P)= UQ1P(UQ1)*= UQ2P(UQ2)*.再由文献[10]的引理4.1知UQ1= UQ2.若令Um= UQ1= UQ2,则对$\forall $ρS(Hm)和Q∈Pur(Hn),有

    同理对$\forall $σS(Hn)和P∈Pur(Hm),有

    等式(6)中的τ2(Q)等于VnQ(Vn)*,其中VnHm上的酉矩阵或共轭酉矩阵.事实上,对$\forall $ρS(Hm),Q1Q2∈Pur(Hn),t∈[0, 1],有

    于是

    注意到映射τ2是满射,所以由文献[5]知τ2(Q)= VnQ(Vn)*.于是等式(6)可以写成

    同理,等式(7)可以写成

    最后,对$\forall $ρS(Hm),σS(Hn),令$\mathit{\boldsymbol{\sigma }} = \sum\limits_{j = 1}^l {{\mu _j}} {\mathit{\boldsymbol{Q}}_j}(l = 1, \cdots, n)$.有

    这时在HmHn上分别存在酉矩阵或共轭酉矩阵WmWn,使得

    Um= WmUmVn=Wn Vn,那么对$\forall $ρS(Hm),σS(Hn),有

    若等式(2)成立,则有ϕ(ρ$\otimes $σ)=(Vn$\otimes $Um)(σ$\otimes $ρ)(Vn$\otimes $Um)*.

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return