Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 7
Article Contents

Peng-xi LI, Zhong-hong LIU, Ling-ling YANG, et al. Design, Synthesis and Biological Activity of R8-Modified Reduction-Sensitive Targeting Photosensitizer[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(7): 23-29. doi: 10.13718/j.cnki.xsxb.2019.07.004
Citation: Peng-xi LI, Zhong-hong LIU, Ling-ling YANG, et al. Design, Synthesis and Biological Activity of R8-Modified Reduction-Sensitive Targeting Photosensitizer[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(7): 23-29. doi: 10.13718/j.cnki.xsxb.2019.07.004

Design, Synthesis and Biological Activity of R8-Modified Reduction-Sensitive Targeting Photosensitizer

More Information
  • Corresponding author: Bing YANG
  • Received Date: 24/06/2018
    Available Online: 20/07/2019
  • MSC: O625.6

  • The present study reported the preparation of a novel R8-modified redox-reponsive prodrug containing meso-tetra (m-hydroxy phenyl) chlorin (m-THPC), octaarginine(R8) and folate. The structure of target compound was characterized by UV-Vis, IR, HPLC, 1HNMR, MS spectra. The results show that the introduction of octa-arginine can significantly improve the solubility of m-THPC and increase the targeting property for tumor cells. m-THPC can be released from photosensitizer 1 under the action of GSH, and the release rate was more than 80% at 6 h. The cytotoxicity test showed that the survival rate of HeLa cell can be reduced to 36.1% whenthe concentration of photosensitizer 1 is 15 μmol/L, and the cytotoxicity of photosensitizer 1 is stronger than photosensitizer 7.
  • 加载中
  • [1] MOYLAN C, SWEED A M K, SHAKER Y M, et al.Lead Structures for Applications in Photodynamic Therapy 7.Efficient Synthesis of Amphiphilic Glycosylated Lipid Porphyrin Derivatives:Refining Linker Conjugation for Potential PDT Applications[J].Tetrahedron, 2015, 71(24):4145-4153. doi: 10.1016/j.tet.2015.04.097

    CrossRef Google Scholar

    [2] NAVARRO F P, CREUSAT G, FROCHOT C, et al.Preparation and Characterization of mTHPC-loaded Solid Lipid Nanoparticles for Photodynamic Therapy[J].Journal of Photochemistry and Photobiology B:Biology, 2014, 130:161-169. doi: 10.1016/j.jphotobiol.2013.11.007

    CrossRef Google Scholar

    [3] DING Y, ZHOU L, CHEN X, et al.MutualSensitization Mechanism and Self-Degradation Property of Drug Delivery System for in Vitro Photodynamic Therapy[J].International Journal of Pharmaceutics, 2016, 498(1-2):335-346. doi: 10.1016/j.ijpharm.2015.12.044

    CrossRef Google Scholar

    [4] 张越, 桑幼, 黄承志.负电铂纳米颗粒与α, β, γ, δ-四(N-甲基-3-吡啶基)卟啉间的相互作用研究[J].西南师范大学学报(自然科学版), 2016, 41(5):8-12.

    Google Scholar

    [5] YOU H, YOON H E, JEONG P H, et al.Pheophorbide-A Conjugates with Cancer-Targeting Moieties for Targeted Photodynamic Cancer Therapy[J].Bioorganic & Medicinal Chemistry, 2015, 23(7):1453-1462.

    Google Scholar

    [6] CHEN Y Y, MINH L V, LIU J W, et al.Baicalin Loaded in folate-PEG Modified Liposomes for Enhanced Stability and Tumor Targeting[J].Colloids and Surfaces B:Biointerfaces, 2016, 140:74-82. doi: 10.1016/j.colsurfb.2015.11.018

    CrossRef Google Scholar

    [7] SCOMPARIN A, SALMASO S, ELDAR-BOOCK A, et al.A Comparative Study of Folate Receptor-Targeted Doxorubicin Delivery Systems:Dosing Regimens and Therapeutic Index[J].Journal of Controlled Release, 2015, 208:106-120. doi: 10.1016/j.jconrel.2015.04.009

    CrossRef Google Scholar

    [8] LI D H, DIAO J L, WANG D, et al.Design, Synthesis and Biological Evaluation of Folate-Porphyrin:A New Photosensitizer for Targeted Photodynamic Therapy[J].Journal of Porphyrins and Phthalocyanines, 2010, 14(6):547-555. doi: 10.1142/S1088424610002379

    CrossRef Google Scholar

    [9] LI D H, LI P X, LIN H Y, et al.ANovel chlorin-PEG-folate Conjugate with Higher Water Solubility, Lower Cytotoxicity, Better Tumor Targeting and Photodynamic Activity[J].Journal of Photochemistry and Photobiology B:Biology, 2013, 127:28-37. doi: 10.1016/j.jphotobiol.2013.06.008

    CrossRef Google Scholar

    [10] SEITZ J D, VINEBERG J G, HERLIHY E, et al.Design, Synthesis and Biological Evaluation of a Highly-Potent and Cancer Cell Selective Folate-Taxoid Conjugate[J].Bioorganic & Medicinal Chemistry, 2015, 23(9):2187-2194.

    Google Scholar

    [11] BOTELLA P, MUNIESA C, VICENTE V, et al.Effect of Drug Precursor in Cell Uptake and Cytotoxicity of Redox-Responsive Camptothecin Nanomedicines[J].Materials Science and Engineering:C, 2016, 58:692-699. doi: 10.1016/j.msec.2015.09.012

    CrossRef Google Scholar

    [12] MINAMIHATA K, MAEDA Y, YAMAGUCHI S, et al.Photosensitizer and Polycationic Peptide-Labeled Streptavidin as a Nano-Carrier for Light-Controlled Protein Transduction[J].Journal of Bioscience and Bioengineering, 2015, 120(6):630-636. doi: 10.1016/j.jbiosc.2015.04.001

    CrossRef Google Scholar

    [13] NORTHFIELD S E, WANG C K, SCHROEDER C I, et al.Disulfide-Rich Macrocyclic Peptides as Templates in Drug Design[J].European Journal of Medicinal Chemistry, 2014, 77:248-257. doi: 10.1016/j.ejmech.2014.03.011

    CrossRef Google Scholar

    [14] VLAHOV I R, WANG Y, KLEINDL P J, et al.Design and Regioselective Synthesis of a New Generation of Targeted Chemotherapeutics.Part Ⅱ:Folic Acid Conjugates of Tubulysins and Their Hydrazides[J].Bioorganic & Medicinal Chemistry Letters, 2008, 18(16):4558-4561.

    Google Scholar

    [15] BRVLISAUER L, GAUTHIER M A, LEROUX J C.Disulfide-Containing Parenteral Delivery Systems and Their Redox-Biological Fate[J].Journal of Controlled Release, 2014, 195:147-154. doi: 10.1016/j.jconrel.2014.06.012

    CrossRef Google Scholar

    [16] EL AISSI R, CHEZAL J M, TARRIT S, et al.Melanoma-Targeted Delivery System (part 1):Design, Synthesis and Evaluation of Releasable Disulfide Drug by Glutathione[J].European Journal of Medicinal Chemistry, 2015, 101:668-680. doi: 10.1016/j.ejmech.2015.06.055

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1005) PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors

Design, Synthesis and Biological Activity of R8-Modified Reduction-Sensitive Targeting Photosensitizer

    Corresponding author: Bing YANG

Abstract: The present study reported the preparation of a novel R8-modified redox-reponsive prodrug containing meso-tetra (m-hydroxy phenyl) chlorin (m-THPC), octaarginine(R8) and folate. The structure of target compound was characterized by UV-Vis, IR, HPLC, 1HNMR, MS spectra. The results show that the introduction of octa-arginine can significantly improve the solubility of m-THPC and increase the targeting property for tumor cells. m-THPC can be released from photosensitizer 1 under the action of GSH, and the release rate was more than 80% at 6 h. The cytotoxicity test showed that the survival rate of HeLa cell can be reduced to 36.1% whenthe concentration of photosensitizer 1 is 15 μmol/L, and the cytotoxicity of photosensitizer 1 is stronger than photosensitizer 7.

  • 光动力治疗(PDT)是利用光敏剂,在一定波长的光照射下,引发光化学反应,产生单线态氧,进而破坏肿瘤,达到治疗肿瘤的目的.目前,第一代光敏剂——血卟啉,因组分复杂、肿瘤靶向性不足、作用深度较浅等缺点,逐渐被第二代光敏剂——替莫卟吩(m-THPC)所取代[1-4].与血卟啉相比,m-THPC具有较高的细胞毒性、肿瘤选择性和较深的作用深度等优点,但存在水溶性不足、肿瘤靶向性差、光毒性等缺点.由于肿瘤组织的代谢异常,导致大部分肿瘤细胞的叶酸受体高表达,且叶酸受体与叶酸具有较高的亲和性[5-7].基于上述原因,前期研究中将羧酸卟啉与叶酸偶联,成功制备了叶酸-羧酸卟啉偶联物,细胞实验发现,与羧酸卟啉相比,宫颈癌细胞(Hela细胞)对叶酸-羧酸卟啉的摄取是羧酸卟啉的35倍,且具有较强的光毒性和较低的暗毒性[8].但叶酸-羧酸卟啉的水溶性不足和卟啉的光动力活性较低,限制其广泛应用.因此,本研究利用叶酸、羧酸卟吩和聚乙二醇二氨(NH2-PEG-NH2),以酰胺键偶联,制备了一种叶酸-PEG-羧酸卟吩(光敏剂7),其分子式为

    光敏剂7在水中的溶解度为40.1 mg/L,细胞靶向性和毒性也远高于羧酸卟吩.然而,光敏剂7仍存在相对分子质量较大、组分不定、光敏剂化学结构改变等问题,导致光动力活性受到影响[9].

    正常组织细胞内谷胱甘肽(GSH)的浓度是细胞外液中的200倍以上,且肿瘤细胞内的GSH是正常细胞的7~10倍,导致肿瘤细胞内具有较强的还原性.因此,还原敏感型药物递送系统成为人们研究的热点.还原敏感型药物主要通过二硫键与GSH的巯基进行可逆转换而实现[10-11].多肽具有合成简单、对肿瘤有被动靶向、多肽修饰的光敏剂能改善油-水分配系数等优点[12-13].因此,本研究采用叶酸受体介导的叶酸靶向策略,m-THPC作为光敏剂,引入穿膜肽八聚精氨酸(R8)连接基团,同时以二硫键为化学键,成功制备了还原敏感型叶酸-多肽-m-THPC(光敏剂1),并对光敏剂1的生物活性进行探究.

1.   实验部分
  • 主要仪器:Varian 640型红外光谱仪(美国Varian公司);DU800型紫外可见分光光度计(美国Beckman公司);Mercuryplus-400 MHZ核磁共振仪(美国Varian公司);Agilent 1200液相色谱仪(美国Agilent公司);KDH 150B红光治疗仪(输出波长600~700 nm,北京科电微波电子有限公司);AXIMA Resonance Lcms 2010质谱仪(日本岛津公司).

    主要试剂:9-芴甲氧羰基-(三苯甲基)半胱氨酸王树脂(Fmoc-Cys(Trt)-王树脂)、9-芴甲氧羰基-精氨酸8-COOH(Fmoc-(Arg)8-COOH)、六氟磷酸苯并三氮唑-1-氧基三吡咯烷基磷(PyBop)、N,N-二异丙基乙基胺(DIPEA)和1-羟基苯并三氮唑(HOBT)均购于上海吉尔生化有限公司;二甲亚砜、吡啶、N,N-二甲基甲酰胺(DMF)、三氟乙酸(TFA)、三乙胺、碳酸三氯甲基酯(三光气)、三异丙基硅烷(TIS)、1,2-乙二硫醇(EDT)和肼均购于中国国药集团;叶酸(FA)(Sigma公司,美国),反相硅胶(ODS-AQ,YMC公司,日本),透析袋(MWCO=1 000,生工生物,上海).二甲亚砜、吡啶和DMF在使用前均经减压蒸馏处理;其余试剂均为AR,使用前未经处理.

  • 色谱柱为300 extend C18柱(5 μm,4.6×150 mm);流动相A为5%乙腈-水溶液(含0.1%三氟乙酸),流动相B为乙腈(含0.1%三氟乙酸),梯度洗脱,在15 min内流动相A从100%到0%,流速:1 mL/min;柱温:25 ℃;进样量:10 μL;紫外可见吸收检测器检测波长:410 nm.

  • 在氩气保护下,将90.62 mg(0.48 mmol)2-(2-羟基-乙二硫)吡啶[14]、0.067 mL(0.48 mmol)三乙胺和47.93 mg(0.48 mmol)三光气溶于15 mL二氯甲烷中,室温反应10 min后,滴加至含有300 mg(0.44 mmol)m-THPC和0.067 mL(0.48 mmol)三乙胺的15 mL在乙腈中,室温反应6 h,减压蒸干溶剂,反相硅胶(ODS-AQ,甲醇)柱色谱分离,得到60.43 mg化合物4,产率为15.36%. UV-Vis (CH3OH):414,514,540,594和648 nm;1HNMR (500 MHz,DMSO-d6):δ9.81,8.72~8.21 (m,6H,CH,Pyrrole),8.21~7.06 (m,20H),4.48 (s,2H,-CH2-,-OCH2-),4.17 (s,4H,-CH2-,Pyrrole),3.23 (s,2H,-CH2-,-CH2S-),1.23 (s,2H,-NH-);MS (ESI):894.1722 (M + H);HPLC:96.6%.

  • 采用多肽固相合成法,在氩气保护下,将1.0 g Fmoc-Cys(Trt)-王树脂置于接肽瓶中,加入2 mL哌啶DMF(20%),振荡1 h,减压抽滤,重复3次,用DMF(3 mL × 3)和异丙醇(3 mL × 3)冲洗树脂,得H2N-Cys(Trt)-王树脂.称取1.19 g Fmoc-(Arg)8-COOH(0.8 mmol)溶于5 mL DMF,加入1.04 g PyBOP(2 mmol)、0.27 g HOBT(2 mmol)和0.41 g DIPEA(3.2 mmol),在氩气保护下,室温反应30 min,加入H2N-Cys(Trt)-王树脂,室温反应4 h,用DMF(5 mL × 3)和异丙醇(5 mL × 3)冲洗树脂,减压抽干,加20%哌啶DMF(2 mL × 3),振荡1 h,减压抽滤,得H2N-(Arg)8-Cys(Trt)-王树脂.将0.35 g叶酸(0.8 mmol)溶于5 mL混合溶剂(n(DMF):n(DMSO)=1:3),加入1.04 g PyBOP(2 mmol)、0.27 g HOBT(2 mmol)和0.41 g DIPEA(3.2 mmol),在氩气保护下,室温活化30 min,加入H2N-(Arg)8-Cys(Trt)-王树脂,室温反应12 h.用DMF(5 mL × 3)和DCM(5 mL× 3)冲洗树脂,减压抽干,得FA-(Arg)8-Cys(Trt)-王树脂.将FA-(Arg)8-Cys(Trt)-王树脂置于接肽瓶中,在氩气保护下,加入2%肼DMF(2 mL × 3),室温反应10 min,减压抽干,用DMF(5 mL × 3)和异丙醇(5 mL × 3)冲洗树脂,减压抽干.加入4 mL混合溶剂(n(TFA):n(H2O):n(TIPS):n(EDT)=92.5:2.5:2.5:2.5),反应30 min,重复3次,收集滤液,真空干燥,得到FA-(Arg)8-Cys-SH粗品.反相硅胶柱色谱分离(40%乙腈水),得到0.53 g纯品. MS(MALDI-TOF):m/z 1793.96;HPLC:98.6%.

  • 光敏剂1的合成路线见图 1.在氩气保护下,将50 mg化合物6(0.0278 mmol)溶于5 mL水中,用饱和Na2CO3溶液调节pH值至6.8,将该溶液加至溶有24.9 mg化合物4(0.0278 mmol)的5 mL DMSO中,室温反应2 h,透析,冷冻干燥,反相硅胶柱色谱分离(45%乙腈水),得到8.64 mg光敏剂1,产率为12.06%. 1HNMR (500 MHz,DMSO-d6) δ:8.72(s,β-H,Pyrrole),8.24~8.39(s,2H,ArH),8.03~8.09(m,4H,ArH),7.41~7.52(m,ArH),4.54(m,-CH2-,Arg),4.19~4.24(m,-CH2-,Arg),3.50(t,-CH2-,Arg),1.73~1.76;MS(MALDI-TOF):m/z 2575.18;HPLC:99.1%.

  • 将还原敏感型光敏剂1和光敏剂7溶于10 mmol/L的磷酸盐缓冲液(PBS,pH=7.0),配制成浓度为12 μmol/L的溶液,在暗室中,用红光治疗仪在600~700 nm下光照射,分别于0,5,10,20,40,80,120 min取样,测定吸光度.光稳定性的计算公式为:ASoret (120 min)/ASoret (0 min) × 100%.

    将过量的还原敏感型光敏剂1和m-THPC分别溶于1 mL水中,振荡2 h,涡旋10 min,保证溶解完全,在转速为12 000 r/min条件下离心40 min,取上清液,冷冻干燥,准确称量,获得溶解度.

  • 将还原敏感型光敏剂1(0.01 mmol,25.77 mg)溶于PBS(10 mL)中,配制成浓度为1 mmol/L的溶液,迅速加入5倍GSH(0.05mmol,15.37mg),在37 ℃涡旋混匀,分别于0,0.5,1.0,1.5,2.0,2.5,3.0,4.0和6.0 h取样,离心,取上清液,微孔滤膜过滤后,供HPLC分析.

  • 将浓度为5 × 104个/mL的人宫颈癌HeLa细胞株(叶酸受体阳性细胞)和人肺腺癌A549细胞(叶酸受体阴性细胞)分别接种于6孔板上,在无叶酸的1640(10%胎牛血清)培养24 h,各设3个试验组.试验组1为在孔中加入还原敏感型光敏剂1,终浓度为16.5 μmol/L;试验组2为在孔中加入光敏剂7,终浓度为16.5 μmol/L;试验组3为同时在孔中加入还原敏感型光敏剂1和FA,其中靶向光敏剂的终浓度为16.5 μmol/L,叶酸的终浓度为3 mmol/L.各实验组培养24 h后弃培养液,DPBS洗涤3次,每孔用4%多聚甲醛固定30 min,吸出液体,DPBS洗涤,甘油封片,激光共聚焦测定各孔细胞中光敏剂的荧光强度(Ex:480 nm;Em:660 nm).

  • 于96孔培养板中接种浓度为5 × 104/mL的HeLa细胞2孔,各分15个组,培养至对数生长期,除对照组外,各组分别加入浓度为0.5,0.9,1.9,3.8,7.5,15.0,30.0,60.0和120.0 μmol/L的光敏剂1和7,培养24 h,冷PBS洗3次,加新鲜培养液,分别用红光治疗仪照射5 min.光照后继续培养24 h,加含MTT(5 g/L)的PBS溶液20 μL,培养4 h,弃去培养液,加入100 μL DMSO,振荡10 min,用酶标仪测定吸光值(570 nm),计算细胞存活率:SR =实验组OD值/对照组OD值× 100%.

2.   结果与讨论
  • 在中间体化合物4的制备中,采用2-(2-羟基-乙二硫)吡啶作为双硫键的引入基团,在三光气和三乙胺的条件下,得到的产率为15.36%.产率较低的原因在于,三光气活性较高,得到的产物不仅有一取代,还有二取代和三取代的副产物;为提高产率,可采用缓慢滴加的方式,将活化后的2-(2-羟基-乙二硫)吡啶,滴加至m-THPC溶液中.

    光敏剂1的制备,是利用双硫键可以发生交换反应,但该反应为可逆反应,为获得较高的产率,应控制反应pH值在6~7之间.在弱酸性条件下,生成副产物巯基吡啶,会成盐,进而降低与光敏剂1发生巯基交换反应的可能性.因此,通过对反应pH值的控制,可以实现多肽修饰的还原敏感型叶酸靶向光敏剂1的制备.

  • 以水为溶剂,测得光敏剂1的溶解度为13.32 mmol/L;m-THPC溶解后,离心,取上清液,UV-vis光谱分析,未见明显吸收峰,说明m-THPC在水中几乎不溶解.因此,八聚精氨酸的引入可显著改善光敏剂在水中的溶解度.

    图 2为光敏剂1和光敏剂7的光稳定性实验结果.结果表明,在5 min内,光敏剂1和光敏剂7的稳定性分别下降18.39%和33.56%;光照10 min后,光敏剂1和光敏剂7的稳定性分别下降36.67%和39.70%.光照大于10 min,光敏剂1的稳定性小于光敏剂7.

  • 在PBS(pH=7.0)、37 ℃和GSH作用下,还原敏感型光敏剂1可释放出母体药物m-THPC,6 h后释放率大于80%(图 3).

    通过对光敏剂1的化学结构分析和文献调研,光敏剂1释放母体药物m-THPC的机理见图 4,其释放属于1,2-消除机理[15-16].

  • 图 5所示,在叶酸受体阳性细胞(HeLa)中光敏剂1和光敏剂7的荧光强度明显大于在叶酸受体阴性细胞(A549)中的荧光强度,即叶酸受体阳性细胞对光敏剂的摄取明显强于叶酸受体阴性细胞,且光敏剂1的吸收作用被大量加入的自由叶酸所抑制,说明光敏剂1的摄取是由肿瘤细胞表面的叶酸受体介导的内吞作用.光敏剂7的摄取是叶酸受体介导的内吞作用已在前期研究中被证实.

    HeLa细胞和A549细胞中,光敏剂1的荧光强度大于光敏剂7的荧光强度,说明肿瘤细胞对光敏剂1的吸收高于光敏剂7.八聚精氨酸(R8)已被证实是一种良好的肿瘤细胞穿膜肽,光敏剂1中引入R8,可提高光敏剂1的肿瘤细胞靶向作用.

  • 图 6为光敏剂1和光敏剂7的细胞毒性随浓度变化的实验结果.结果表明,在浓度为0.5~120μmol/L时,光敏剂1和光敏剂7的细胞毒性随浓度的增加而增加.当浓度为15μmol/L时,光敏剂1和光敏剂7对HeLa细胞的存活率分别降低至36.1%和39.7%.由于穿膜肽R8的靶向作用,导致光敏剂1的摄取大于光敏剂7,进而光敏剂1的细胞毒性大于光敏剂7.

3.   结论
  • 采用八聚精氨酸(R8)为连接基团,叶酸为靶向基团,m-THPC为光敏剂,通过形成双硫键,制备了一种多肽修饰的还原敏感型光敏剂.研究发现,光敏剂1在水中的溶解度为13.32 mmol/L;在GSH作用下,6 h内光敏剂1释放率大于80%,文献分析发现,释放机理属于1,2-消除机理.细胞靶向性实验表明,穿膜肽R8的引入对肿瘤细胞的摄取具有协同作用,与光敏剂7相比,光敏剂1的细胞摄取率大于光敏剂7.细胞毒性实验证明,当光敏剂1浓度为15 μmol/L时,光敏剂1对HeLa细胞的存活率为36.1%,光敏剂7对HeLa细胞的存活率为39.7%,光敏剂1的细胞毒性高于光敏剂7.

Figure (6)  Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return