Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 46 Issue 7
Article Contents

LIU Jun, LIU Xi, ZHU Chun-yan, et al. On Oscillation of Third-Order Neutral Differential Equations with Distributed Delay[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(7): 1-8. doi: 10.13718/j.cnki.xsxb.2021.07.001
Citation: LIU Jun, LIU Xi, ZHU Chun-yan, et al. On Oscillation of Third-Order Neutral Differential Equations with Distributed Delay[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(7): 1-8. doi: 10.13718/j.cnki.xsxb.2021.07.001

On Oscillation of Third-Order Neutral Differential Equations with Distributed Delay

More Information
  • Received Date: 24/02/2020
    Available Online: 20/07/2021
  • MSC: O175.1

  • The objective of this paper is to study the oscillation of a class of third-order neutral differential equations with distributed delay. In this paper, not only the situation of βα, but also the situation of β < α has been studied. By means of the generalized Riccati transformation technique and special techniques, some new sufficient conditions for all solutions of the equation to be oscillatory or asymptotically convergent to zero have been obtained.
  • 加载中
  • [1] 仉志余, 王晓霞, 俞元洪. 三阶半线性中立型分布时滞微分方程的振动性[J]. 应用数学学报, 2015, 38(3): 450-459.

    Google Scholar

    [2] JIANG C M, JIANG Y, LI T X. Asymptotic Behavior of Third-Order Differential Equations with Nonpositive Neutral Coefficients and Distributed Deviating Arguments[J]. Advances in Difference Equations, 2016, 105: 1-14. doi: 10.1186%2Fs13662-016-0833-3

    CrossRef Google Scholar

    [3] 林全文, 俞元洪. 三阶半线性时滞微分方程的振动性和渐近性[J]. 系统科学与数学, 2015, 35(2): 233-244.

    Google Scholar

    [4] 屈英. 三阶非线性中立型方程的Philos型振动定理[J]. 数学的实践与认识, 2011, 41(7): 247-252.

    Google Scholar

    [5] 罗李平, 俞元洪. 三阶半线性中立型微分方程的振动结果[J]. 系统科学与数学, 2012, 32(5): 571-579.

    Google Scholar

    [6] FU Y L, TIAN Y Z, JIANG C M, et al. On the Asymptotic Properties of Nonlinear Third-Order Neutral Delay Differential Equations with Distributed Deviating Arguments[J]. Journal of Function Spaces, 2016, 2016: 1-5.

    Google Scholar

    [7] AKTAS M F, TIRYAKI A, ZAFER A. Oscillation Criteria for Third-Order Nonlinear Functional Differential Equations[J]. Applied Mathematics Letters, 2010, 23(7): 756-762. doi: 10.1016/j.aml.2010.03.003

    CrossRef Google Scholar

    [8] BACULIKOVA B, DZURINA J. Oscillation of Third-Order Neutral Differential Dquations[J]. Mathematical and Computer Modelling, 2010, 52(1-2): 215-226. doi: 10.1016/j.mcm.2010.02.011

    CrossRef Google Scholar

    [9] CANDAN T. Asymptotic Properties of Solutions of Third-Order Nonlinear Neutral Dynamic Equations[J]. Advances in Difference Equations, 2014, 35: 1-10. doi: 10.1186/1687-1847-2014-35

    CrossRef Google Scholar

    [10] SUN Y B, ZHAO Y G. Oscillation Criteria for Third-Order Nonlinear Neutral Differential Equations with Distributed Deviating Arguments[J]. Applied Mathematics Letters, 2021, 25(10): 1514-1519.

    Google Scholar

    [11] MOJSEJ I. Asymptotic Properties of Solutions of Third Order Nonlinear Differential Equations with Deviating Argument[J]. Nonlinear Analysis, 2008, 68(11): 3581-3591. doi: 10.1016/j.na.2007.04.001

    CrossRef Google Scholar

    [12] LIU H D, MENG F W, LIU P C. Oscillation and Asymptotic Analysis on a New Generalized Emden-Fowler Equation[J]. Appied Mathematics and Computation, 2012, 219: 2739-2748. doi: 10.1016/j.amc.2012.08.106

    CrossRef Google Scholar

    [13] 曾云辉, 罗李平, 俞元洪. 中立型Emden-Fowler时滞微分方程的振动性[J]. 数学物理学报, 2015, 35(4): 803-814. doi: 10.3969/j.issn.1003-3998.2015.04.016

    CrossRef Google Scholar

    [14] AKTAS M F, CAKMAK D, TIRYAKI A. On the Qualitative Behaviors of Solutions of Third-Order Nonlinear Functional Differential Equations[J]. Appied Mathematics Letters, 2011, 24: 1849-1855. doi: 10.1016/j.aml.2011.05.004

    CrossRef Google Scholar

    [15] CANDAN T. Oscillation Criteria and Asymptotic Properties of Solutions of Third-Order Nonlinear Neutral Differential Equations[J]. Mathematical Methods in the Applied Sciences, 2014, 38(7): 1379-1392.

    Google Scholar

    [16] 魏娟, 朱朝生. 非局部非线性Schrödinger方程组解的渐近行为[J]. 西南大学学报(自然科学版), 2019, 41(2): 60-63.

    Google Scholar

    [17] 徐茜. 空间异质环境下带交错扩散项的Lotka-Volterra模型分岔解的稳定性[J]. 西南大学学报(自然科学版), 2018, 40(11): 35-40.

    Google Scholar

    [18] 刘诗焕, 朱先阳. 高维空间中阻尼Boussinesq方程初值问题的整体解[J]. 西南师范大学学报(自然科学版), 2018, 43(9): 1-5.

    Google Scholar

    [19] 赵阳洋, 崔泽建. 一类带非局部源的反应扩散方程解的整体存在与爆破[J]. 西南师范大学学报(自然科学版), 2019, 44(8): 34-38.

    Google Scholar

    [20] 王开敏, 李中平. 一类非线性伪抛物系统的全局解与非全局解[J]. 贵州师范大学学报(自然科学版), 2018, 36(2): 59-63. doi: 10.3969/j.issn.1004-5570.2018.02.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(677) PDF downloads(209) Cited by(0)

Access History

Other Articles By Authors

On Oscillation of Third-Order Neutral Differential Equations with Distributed Delay

Abstract: The objective of this paper is to study the oscillation of a class of third-order neutral differential equations with distributed delay. In this paper, not only the situation of βα, but also the situation of β < α has been studied. By means of the generalized Riccati transformation technique and special techniques, some new sufficient conditions for all solutions of the equation to be oscillatory or asymptotically convergent to zero have been obtained.

  • 考虑如下一类三阶中立型分布时滞微分方程:

    目前对三阶微分方程振动性研究还比较少. 文献[1-3]研究了α=β的情况,其中文献[3]研究了

    的振动性. 文献[4]在

    的情形下,研究了

    的振动性(α=β=1). 文献[5]在

    情形,研究了如下三阶半线性中立型微分方程的振动性(α=β):

    文献[6]在

    情形下,研究了如下三阶微分方程的振动性(α=β):

    文献[7]在uf(u)≥0情形下,研究了

    振动性(α=β=1). 文献[8-9]在α=β、文献[10-11]在α=β=1情形下研究了三阶微分方程的振动性. 文献[12]在αβ>0、文献[13]在αββα情形研究了二阶微分方程

    的振动性. 文献[14]在α=β=1、文献[15]在α=β情形研究了三阶微分方程的振动性. 文献[16-20]研究了一些方程或方程组解的存在性及渐近性态.

    从上述文献可看到,三阶微分方程基本上是在α=β的情形下展开研究的[1-11, 14-15],二阶微分方程也只有极少数文章在αβ>0,βααβ的情形下展开研究[12-13].

    本文拟在βααβ两种情形下探讨一类三阶中立型分布时滞微分方程(1)的振动性,运用广义Riccati变换和特殊技术,同时处理了βααβ两种情形,并将这两种情形统一起来,最终获得了方程(1)解振动或收敛于零的新的充分条件,文章所得的新的结论是上述文献的推广和改进.

    在方程(1)中

    并假设下列条件成立:

    (Ⅰ) $f(x) \in C(R, R), \frac{{f(x)}}{{{r^\beta }}} \ge \delta > 0, x \ne 0, $ αβ是正奇数.

    (Ⅱ) $r(t) \in {C^1}\left( {\left[ {{t_0}, \infty } \right), (0, \infty )} \right), \int_{{t_0}}^\infty {{r^{ - \frac{1}{\alpha }}}} (t){\rm{d}}t = \infty , $ $p(t, \xi ) \in C\left( {\left[ {{t_0}, \infty } \right) \times [a, b], R} \right), p(t, \xi ) \ge 0, $ $0 \le \int_a^b p (t, \xi ){\rm{d}}\xi \le {p_0} < 1;$

    (Ⅲ) τ(tξ)∈C([t0,∞)×[ab],R),τ(tξ)≤t$\mathop {\lim \inf }\limits_{t \to \infty } \tau (t,\xi ) = \infty ;\sigma (t,\xi ) \in {C^1}\left( {\left[ {{t_0},\infty } \right) \times } \right.[c,d],R)$是关于ξ的非减函数,σ(tξ)≤t$\mathop {\lim }\limits_{t \to \infty } (t, \xi ) = \infty , \xi \in [c, d]$

    (Ⅳ) $q(t, \xi ) \in C\left( {\left[ {{t_0}, \infty } \right] \times [c, d], \;\;{\mathbb{R}_ + }} \right)$.

    引理1  假设x(t)是方程(1)的正解,且条件(Ⅱ)-(Ⅳ)成立,则存在t1t0,使得对tt1z(t)具有下列4种可能性质:

    (ⅰ) z(t)>0,z′(t)>0,z″(t)>0,(r(t)|z″(t)|α-1z″(t))′≤0;

    (ⅱ) z(t)>0,z′(t) < 0,z″(t)>0,(r(t)|z″(t)|α-1z″(t))′≤0;

    (ⅲ) z(t) < 0,z′(t) < 0,z″(t)>0,(r(t)|z″(t)|α-1z″(t))′≤0;

    (ⅳ) z(t) < 0,z′(t) < 0,z″(t) < 0,(r(t)|z″(t)|α-1z″(t))′≤0.

      若x(t)是方程(1)的正解,那么存在t1t0,使得对tt1,有

    z(t)的定义可得x(t)≥z(t),从方程(1)得到

    r(t)(z″(t))α是减函数而且最终定号,因此,存在t2t1,使得tt2,有z″(t) < 0或z″(t)>0.

    z″(t) < 0,tt2,那么由(2)式得到

    于是r(t)(-z″(t))α是增函数,则存在正常数M>0,使得

    进一步在[t2t]上积分,得到

    由(Ⅱ)知$\mathop {\lim }\limits_{t \to \infty } {z^\prime }(t) = - \infty $,则z′(t) < 0最终成立,而z″(t) < 0,因此z(t) < 0,得到性质(ⅳ).

    z″(t)>0,tt2,则z′(t)定号. 如果z′(t)>0,那么z(t)>0,得到性质(ⅰ). 如果z′(t) < 0,那么z(t)>0或z(t) < 0,得到(ⅱ)和(ⅲ)两种性质.

    引理2  假设x(t)是方程(1)的正解,并且z(t)满足引理1的性质(i),则存在t1t0t2t1,使得对tt2,有

    $\frac{{{z^\prime }(t)}}{{\int_{{t_1}}^t {{r^{ - \frac{1}{\alpha }}}} (s){\rm{d}}s}}$是减函数.

      若z(t)满足引理1性质(i),则

    于是

    $\frac{{{z^\prime }(t)}}{{\int_{{t_1}}^t {{r^{ - \frac{1}{\alpha }}}} (s){\rm{d}}s}}$是减函数,故

    定理1  假设存在函数ρ(t)∈C1([t0,∞),${\mathbb{R}_+}$),使得

    其中

    则引理1中的性质(ⅰ)不成立.

      设x(t)是方程(1)的正解,z(t)满足引理1中的性质(i),由方程(1)得到

    其中

    分两种情况讨论如下:

    1) 若βα,定义函数如下

    w(t)>0,且

    由于z′(t)>0,则z(t)是增函数,而z(t)>0,βα,则存在正常数M1>0,使得

    由引理2和条件(Ⅲ)有

    于是

    其中

    因此

    2) 若β < α,定义函数

    w(t)>0,并有

    由方程(1)和引理1的性质(ⅰ),有$z'''$ (t)≤0即z″(t)是减函数,$\frac{1}{{z''\left( t \right)}}$是增函数,由于

    则存在常数M2≥1,使得

    类似于(5)式得到

    于是

    则可将(6)式与(7)式统一写成

    参照文献[1]使用不等式:

    则由(8)式得到

    进一步在[Tt]上积分,有

    此式与(4)式相矛盾,则引理1中的性质(i)不存在.

    定理2  假设x(t)是方程(1)的正解,且引理1中的性质(ⅱ)成立,若

    $\mathop {\lim }\limits_{t \to \infty } x(t) = 0$.

      由引理1(ⅱ)知,存在常数c≥0,使得$\mathop {\lim }\limits_{t \to \infty } z(t) = c$,我们的目标是c=0. 假设c>0,由z(t)的定义和(ⅱ)知x(t)≥z(t)>c,由方程(1)有

    进一步在[t,∞]上积分

    将(10)式在[t,∞]上积分,再在[t1,∞]上积分,注意到z′(t) < 0,得到

    与(9)式相矛盾,因此,c=0,即$\mathop {\lim }\limits_{t \to \infty } z(t) = 0$.

    接下来,要证明x(t)有界. 用反证法,假设x(t)无界,则存在序列{tn},使得$\mathop {\lim }\limits_{n \to \infty } {t_n} = \infty , \mathop {\lim }\limits_{n \to \infty } x\left( {{t_n}} \right) = \infty $. 其中x(tn)=max{x(s):t0stn}.

    由条件(Ⅲ),$\mathop {\lim \inf }\limits_{t \to \infty } \tau (t, \xi ) = \infty $,可得τ(tnξ)>t0对充分大的n成立. 又由条件(Ⅲ)的τ(tξ)≤t,有

    则由条件(Ⅱ),有

    由假设$\mathop {\lim }\limits_{t \to \infty } x\left( {{t_n}} \right) = \infty $可得$\mathop {\lim }\limits_{t \to \infty } z\left( {{t_n}} \right) = \infty $,这与$\mathop {\lim }\limits_{t \to \infty } z(t) = 0$相矛盾,所以x(t)有界.

    $\mathop {\lim \sup }\limits_{t \to \infty } x(t) = {a_0}$,0≤a0 < ∞,则存在序列{tk},使得$\mathop {\lim }\limits_{k \to \infty } x\left( {{t_k}} \right) = {a_0}$. 如果a0>0,则取

    可得x(tk) < a0+ε0,我们有

    此式矛盾,则a0=0,故$\mathop {\lim }\limits_{t \to \infty } x(t) = 0$.

    定理3  假设(4)式和(9)式成立,则方程(1)的解振动或者$\mathop {\lim }\limits_{t \to \infty } x(t) = 0$.

      由定理1知,引理1性质(ⅰ)不存在. 若引理1性质(ⅱ)满足,由定理2得到$\mathop {\lim }\limits_{t \to \infty } x(t) = 0$.

    如果引理1的性质(ⅲ)或(ⅳ)满足,则$\mathop {\lim }\limits_{t \to \infty } (t) = {c_0} < 0$ (可能c0=-∞)或$\mathop {\lim }\limits_{t \to \infty } (t) = - \infty $. 类似于定理2的推导可知x(t)和z(t)有界,于是c0是有限数,则性质(ⅳ)不会满足,类似于定理2的推导可得到$\mathop {\lim }\limits_{t \to \infty } x(t) = 0$. 因此,方程(1)的解振动或$\mathop {\lim }\limits_{t \to \infty } x(t) = 0$.

      考虑下列三阶微分方程

    $a = 0, b = \frac{\pi }{2}, c = 2\pi , d = 3\pi , r(t) = 1, p(t, \xi ) = \frac{1}{2}, \tau (t, \xi ) = t - \xi , \sigma (t, \xi ) = t - \frac{\xi }{2}, q(t, \xi ) = \frac{1}{4}, \alpha = 1, \beta = 1, \lambda = 1$. 选取ρ(t)=1,显然(9)式成立,且

    即(4)式成立,定理3条件满足,可得例题中方程的解振动或$\mathop {\lim }\limits_{t \to \infty } x(t) = 0$.事实上,可以验证x(t)=cost就是该方程的振动解.

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return