Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 5
Article Contents

OUYANG Baiping. Blow-up Study on Semi-linear Double-Wave Equation with Time-Dependent Coefficient on Nonlinearity[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(5): 43-49. doi: 10.13718/j.cnki.xsxb.2022.05.006
Citation: OUYANG Baiping. Blow-up Study on Semi-linear Double-Wave Equation with Time-Dependent Coefficient on Nonlinearity[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(5): 43-49. doi: 10.13718/j.cnki.xsxb.2022.05.006

Blow-up Study on Semi-linear Double-Wave Equation with Time-Dependent Coefficient on Nonlinearity

More Information
  • Received Date: 30/11/2020
    Available Online: 20/05/2022
  • MSC: O175.2

  • In this paper, the blow-up of solutions has been considered to a class of semi-linear double-wave equations with time-dependent coefficient on the nonlinearity. By means of differential inequalities and an iteration argument, the blow-up and the upper bound of the lifespan of solutions have been obtained to the Cauchy problem for semi-linear double-wave equations in the subcritical case, which generalize further the facts on the Cauchy problem for wave equations in high orders.
  • 加载中
  • [1] KATO T. Blow-up of Solutions of some Nonlinear Hyperbolic Equations[J]. Communications on Pure and Applied Mathematics, 1980, 33(4): 501-505. doi: 10.1002/cpa.3160330403

    CrossRef Google Scholar

    [2] JOHN F. Blow-up of Solutions of Nonlinear Wave Equations in Three Space Dimensions[J]. Manuscripta Mathematica, 1979, 28(1-3): 235-268. doi: 10.1007/BF01647974

    CrossRef Google Scholar

    [3] STRAUSS W A. Nonlinear Scattering Theory at Low Energy[J]. Journal of Functional Analysis, 1981, 41(1): 110-133. doi: 10.1016/0022-1236(81)90063-X

    CrossRef Google Scholar

    [4] GLASSEY R T. Finite-Time Blow-up for Solutions of Nonlinear Wave Equations[J]. Mathematische Zeitschrift, 1981, 177(3): 323-340. doi: 10.1007/BF01162066

    CrossRef Google Scholar

    [5] SIDERIS T C. Nonexistence of Global Solutions to Semilinear Wave Equations in High Dimensions[J]. Journal of Differential Equations, 1984, 52(3): 378-406. doi: 10.1016/0022-0396(84)90169-4

    CrossRef Google Scholar

    [6] SCHAEFFER J. The Equation uttu=|u|p for the Critical Value of p[J]. Proceedings of the Royal Society of Edinburgh: Section A, 1985, 101(1/2): 31-44.

    Google Scholar

    [7] TAKAMURA H, WAKASA K. The Sharp Upper Bound of the Lifespan of Solutions to Critical Semilinear Wave Equations in High Dimensions[J]. Journal of Differential Equations, 2011, 251(4/5): 1157-1171.

    Google Scholar

    [8] TAKAMURA H. Improved Kato's Lemma on Ordinary Differential Inequality and Its Application to Semilinear Wave Equations[J]. Nonlinear Analysis, 2015, 125: 227-240. doi: 10.1016/j.na.2015.05.024

    CrossRef Google Scholar

    [9] ZHOU Y, HAN W. Life-Span of Solutions to Critical Semilinear Wave Equations[J]. Communications in Partial Differential Equations, 2014, 39(3): 439-451. doi: 10.1080/03605302.2013.863914

    CrossRef Google Scholar

    [10] CHEN W H. Interplay Effects on Blow-up of Weakly Coupled Systems for Semilinear Wave Equations with General Nonlinear Memory Terms[J]. Nonlinear Analysis, 2021, 202: 112160. doi: 10.1016/j.na.2020.112160

    CrossRef Google Scholar

    [11] CHEN W H, PALMIERI A. Nonexistence of Global Solutions for the Semilinear Moore-Gibson-Thompson Equation in the Conservative Case[J]. Discrete & Continuous Dynamical Systems-A, 2020, 40(9): 5513-5540.

    Google Scholar

    [12] CHEN W H, REISSIG M. Blow-up of Solutions to Nakao's Problem via an Iteration Argument[J]. Journal of Differential Equations, 2021, 275: 733-756. doi: 10.1016/j.jde.2020.11.009

    CrossRef Google Scholar

    [13] CHEN W H, IKEHATA R. The Cauchy Problem for the Moore-Gibson-Thompson Equation in the Dissipative Case[J]. Journal of Differential Equations, 2021, 292: 176-219. doi: 10.1016/j.jde.2021.05.011

    CrossRef Google Scholar

    [14] CHEN W H, PALMIERI A. Weakly Coupled System of Semilinear Wave Equations with Distinct Scale-Invariant Terms in the Linear Part[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2019, 70(2): 1-21.

    Google Scholar

    [15] LAI N A, TAKAMURA H. Nonexistence of Global Solutions of Nonlinear Wave Equations with Weak Time-Dependent Damping Related to Glassey's Conjecture[J]. Differential Integral Equations, 2019, 32(1/2): 37-48.

    Google Scholar

    [16] PALMIERI A, TAKAMURA H. Blow-up for a Weakly Coupled System of Semilinear Damped Wave Equations in the Scattering Case with Power Nonlinearities[J]. Nonlinear Analysis, 2019, 187: 467-492. doi: 10.1016/j.na.2019.06.016

    CrossRef Google Scholar

    [17] LIU Y. Blow-up Phenomena for the Nonlinear Nonlocal Porous Medium Equation under Robin Boundary Condition[J]. Computers & Mathematics With Applications, 2013, 66(10): 2092-2095.

    Google Scholar

    [18] TAO X Y, FANG Z B. Blow-up Phenomena for a Nonlinear Reaction-Diffusion System with Time Dependent Coefficients[J]. Computers & Mathematics With Applications, 2017, 74(10): 2520-2528.

    Google Scholar

    [19] MA L W, FANG Z B. Blow-up Phenomena of Solutions for a Reaction-Diffusion Equation with Weighted Exponential Nonlinearity[J]. Computers & Mathematics With Applications, 2018, 75(8): 2735-2745.

    Google Scholar

    [20] YORDANOV B T, ZHANG Q S. Finite Time Blow up for Critical Wave Equations in High Dimensions[J]. Journal of Functional Analysis, 2006, 231(2): 361-374. doi: 10.1016/j.jfa.2005.03.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(493) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Blow-up Study on Semi-linear Double-Wave Equation with Time-Dependent Coefficient on Nonlinearity

Abstract: In this paper, the blow-up of solutions has been considered to a class of semi-linear double-wave equations with time-dependent coefficient on the nonlinearity. By means of differential inequalities and an iteration argument, the blow-up and the upper bound of the lifespan of solutions have been obtained to the Cauchy problem for semi-linear double-wave equations in the subcritical case, which generalize further the facts on the Cauchy problem for wave equations in high orders.

  • 近年来,有关半线性波动方程柯西问题的研究受到广泛的关注. 有很多学者[1-9]研究了如下波动方程的柯西问题

    其中p>1,n≥1和u=u(tx)∈ $\mathbb{R}$ε>0.

    众所周知,(1)式中的临界指数Pcrit(n)即Strauss指数在波动方程解的全局性与爆破研究中起着重要作用. (1)式中的临界指数Pcrit(n)由下面一元二次方程的正根表示

    也就是

    对于n=1,有Pcrit(1)=∞.

    对于(1)式的研究,学者们主要采用的方法是基于微分不等式和Kato引理. 然而,Kato引理只适用于二阶的微分方程,对于高阶的波动方程(比如四阶),则需要寻找其他的办法. 近来有学者采用迭代办法研究了某些双曲方程解的全局性和爆破问题[10-16]. 有关其他的偏微分方程解的爆破问题研究可参考文献[17-19].

    本文研究如下系数依赖于时间的非线性项的半线性双波动方程解的爆破问题

    其中f(t)=(1+t)-α,0 < α < 2,p>1,ε>0,Δ是拉普拉斯算子.

    目前,有关高阶的半线性双波动方程柯西问题解的爆破研究尚未得到展开. 其主要难点在于如何构造测试函数通过迭代方法来解决高阶波动方程柯西问题研究中出现的问题. 本文通过选取合适的测试函数进行迭代得到了在非临界情况下系数依赖于时间的非线性项的半线性双波动方程解的上界估计.

    首先给出(2)式的柯西问题能量解的定义

    定义1  设(u0u1u2u3)∈H3($\mathbb{R}$nH2($\mathbb{R}$nH1($\mathbb{R}$nL2($\mathbb{R}$n),对于uC([0,T),H3($\mathbb{R}$n))∩C1([0,T),H2($\mathbb{R}$n))∩C2([0,T),H1($\mathbb{R}$n))∩C3([0,T),L2($\mathbb{R}$n))且uLlocp([0,T$\mathbb{R}$n)满足

    其中:φ(tx)∈C0([0,T$\mathbb{R}$n)和t∈[0,T).

    对于(3)式,由分部积分可得

    tT,则u满足(2)式定义的弱解的定义.

1.   本文主要结果
  • 定理1  设

    其中:p0(nα)= $\frac{{n + 3 - 2\alpha + \sqrt {{{(n + 3 - 2\alpha )}^2} + 16n - 48} }}{{2(n - 3)}}$u2u3)∈H3($\mathbb{R}$nH2($\mathbb{R}$nH1($\mathbb{R}$nL2($\mathbb{R}$n)是非负的紧致函数. 初始条件的支集落在半径为R的球BR内,使得ui(i=0,1,2,3)不恒为0. 特别的,假设∫$\mathbb{R}$n(u3(x)+u2(x)-u1(x)-u0(x))dx>0和∫$\mathbb{R}$n(2u1(x)-u0(x)-u2(x))dx>0. 如果u是(2)式的解,其生命跨度T(ε)满足u(t,·)⊂Bt+Rt∈(0,T),那么存在一个正常数ε0=ε0(u0u1u2u3npαR),使得当ε∈(0,ε0]时,u在有限时间爆破,其生命跨度的上界估计为

    其中$\tilde {\tilde C}$独立于ε,且

2.   爆破时间的上界估计
  • (4) 式中,取φ≡1,{(sx)∈[0,t$\mathbb{R}$n:|x|≤R+s},可得

    联立(6),(7)式,得到

    对(8)式关于t积分3次,可得

    因为支集u(t,·)⊂Bt+R,∀t∈(0,T),由Hölder不等式,可得

    由(9),(10)式,可得

    下面将通过对U(t)的下界进行迭代完成定理的证明. (11)式确定了迭代的框架. 为了推导U(t)的第一个下界估计,引入如下函数[20]

    函数Φ(x)是正的,并且有下面的性质

    Ψ=Ψ(tx)=e-tΦ(x),显然,Ψ满足(∂t2-Δ)2Ψ=0.

    定义辅助函数

    对(8)式关于时间t求导数,得

    应用Hölder不等式于(12)式,得到

    将测试函数Ψ应用到(3)式,有

    对(15)式分部积分并注意到Ψ的性质,可得

    其中

    联立(12)式和(16)式,得

    于是,(17)式可化为

    对(18)式积分,得

    由(19)式和F(t)的定义,有

    对(20)式关于t求积分,可推出

    其中δ=min{1-e-2tt e-2t}.

    由定理的条件,可得当tt0时,有

    Ψ的渐近性,可得

    其中$\tilde K$为正常数,p′为p的共轭指数.

    由(14),(22)和(23)式有

    其中C0= ${\tilde C^p}{\tilde K^{ - \left( {p - 1} \right)}}$st0.

    联立(13)和(24)式可得

    其中tt0.

    对(25)式求积分,有

    (26) 式可记为

    其中${K_0} = \frac{{{C_0}{\varepsilon ^p}}}{{(n + p)(n + p + 1)(n + p + 2)(n + p + 3)}}$${\alpha _0} = \frac{{(n - 1)p}}{2} + \alpha $β0=n+p+3,tt0.

    接下来,将通过迭代来推导U(t)的下界

    其中非负实序列{Kj}j$\mathbb{N}$,{αj}j$\mathbb{N}$,{βj}j$\mathbb{N}$将在下文定义.

    联立(11)和(28)式,得

    接着取

    则(29)式可化为

    (31) 式表明(28)式对于j+1是成立的. 接下来,将对Kjαjβj进行估计.

    由(30)式有

    又由于

    联立(30)和(33)式,得到

    其中$D = C{\left( {\frac{5}{{p - 1}} + {\beta _0}} \right)^{ - 5}}$.

    对(34)式两边取对数可得

    j0=j0(np)∈$\mathbb{N}$为满足

    的最小正整数,从而,对于jj0,由(35)式可得

    其中E0=E0(np)>0.

    联立(28),(32)和(36)式,得到

    其中jj0tt0.

    tR+2t0时,有log(R+t)≤log(2(t-t0)). 于是(37)式化为

    其中t-t0的指数为

    由于0 < α < 2,当n=1,2,3时,p>1;当n≥4时,1 < p < p0(nα).

    ε0=ε0(u0u1u2u3npαR)>0,使得

    其中${E_1} = {\left( {{2^{ - \left( {\frac{\alpha }{{p - 1}} + n + \alpha 0} \right)}}\varepsilon } \right)^{ - \frac{{2p(p - 1)}}{{{\rm{Y}}(n, p, \alpha )}}}}$.

    因此,当ε∈(0,ε0]和t-t0>$E_1^{ - 1}{\varepsilon ^{ - \frac{{2p(p - 1)}}{{{\rm{Y}}(n, p, \alpha )}}}}$R时,可得

    在(38)式中,令j→∞,可推出当ε∈(0,ε0]和t-t0>$E_1^{ - 1}{\varepsilon ^{ - \frac{{2p(p - 1)}}{{{\rm{Y}}(n, p, \alpha )}}}}$RU(t)的下界爆破. 这表明方程(2)不存在全局解. 进一步可得u的局部的生命跨度估计

    从而证明了定理1.

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return