Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 8
Article Contents

FENG Xue. Almost Ideal λr-Statistical Convergence and Strongly Almost Ideal λr-Convergence of β of Sequences of Fuzzy Numbers with Respect to the Orlicz Function[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(8): 24-31. doi: 10.13718/j.cnki.xsxb.2022.08.004
Citation: FENG Xue. Almost Ideal λr-Statistical Convergence and Strongly Almost Ideal λr-Convergence of β of Sequences of Fuzzy Numbers with Respect to the Orlicz Function[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(8): 24-31. doi: 10.13718/j.cnki.xsxb.2022.08.004

Almost Ideal λr-Statistical Convergence and Strongly Almost Ideal λr-Convergence of β of Sequences of Fuzzy Numbers with Respect to the Orlicz Function

More Information
  • Received Date: 05/12/2021
    Available Online: 20/08/2022
  • MSC: O159

  • Based on the new approach of ideal statistical convergence, the λr-statistical convergence and almost statistical convergence, respectively, defined the fuzzy sequence about order β almost ideal λr-statistical convergence and strong almost ideal λr-convergence. An example of almost ideal λr-statistical convergence rather than statistical convergence shows that the new definition of ideal statistical convergence condition is weaker and wider. In addition, the relationship of the fuzzy sequence space $\tilde W$β(M, r, λ), $\tilde S$β(λ) and $\tilde S$β(M, r, λ) have been investigated, the more general fuzzy sequence of ideal convergence and strongly ideal convergence have been concluded.
  • 加载中
  • [1] FAST H. Sur La Convergence Statistique[J]. Colloquium Mathematicum, 1951, 2(3/4): 241-244.

    Google Scholar

    [2] FRIDY J A. On Statistical Convergence[J]. Analysis, 1985, 5(4): 301-313.

    Google Scholar

    [3] FREEDMAN A, SEMBER J. Densities and Summability[J]. Facific Journal of Mathematics, 1981, 95(2): 293-305. doi: 10.2140/pjm.1981.95.293

    CrossRef Google Scholar

    [4] FRIDY J, ORHAN C. Lacunary Statistical Convergence[J]. Facific Journal of Mathematics, 1993, 160(1): 43-51. doi: 10.2140/pjm.1993.160.43

    CrossRef Google Scholar

    [5] FRIDY J A, ORHAN C. Lacunary Statistical Summability[J]. Journal of Mathematical Analysis and Applications, 1993, 173(2): 497-504. doi: 10.1006/jmaa.1993.1082

    CrossRef Google Scholar

    [6] MURSALEEN M. λ-Statistical Convergence[J]. Mathematica Slovaca, 2000, 50(1): 111-115.

    Google Scholar

    [7] CONNOR J. On Strong Matrix Summability with Respect to a Modulus and Statistical Convergence[J]. Canadian Mathematical Bulletin, 1989, 23(2): 194-198.

    Google Scholar

    [8] CONNOR J. Two Valued Measures and Summability[J]. Analysis, 1990, 10(4): 373-385.

    Google Scholar

    [9] DAS P, SAVAS E, GHOSAL S K. On Generalizations of Certain Summability Methods Using Ideals[J]. Applied Mathematics Letters, 2011, 24(9): 1509-1514. doi: 10.1016/j.aml.2011.03.036

    CrossRef Google Scholar

    [10] 冯雪, 巩增泰. 基于Orlicz函数的模糊数列AI-统计收敛和强AI-收敛[J]. 云南大学学报(自然科学版), 2020, 42(1): 6-13.

    Google Scholar

    [11] ZZDEH L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353. doi: 10.1016/S0019-9958(65)90241-X

    CrossRef Google Scholar

    [12] SAVAS E. On Statistically Convergent Sequences of Fuzzy Numbers[J]. Information Sciences, 2001, 137(1/2/3/4): 277-282.

    Google Scholar

    [13] KUMAR V, KUMAR K. On the Ideal Convergence of Sequences of Fuzzy Numbers[J]. Information Sciences, 2008, 178(24): 4670-4678. doi: 10.1016/j.ins.2008.08.013

    CrossRef Google Scholar

    [14] LINDENSTRAUSS J, TZAFRIRI L. On Orlicz Sequence Spaces·Ⅱ[J]. Israel Journal of Mathematics, 1972, 11(4): 355-379. doi: 10.1007/BF02761463

    CrossRef Google Scholar

    [15] CHOUDHARY B, PARASHAR S D. A Sequence Space Defined by Orlicz Functions[J]. Approx Theory and its Appl, 2002, 18(4): 63-68.

    Google Scholar

    [16] TRIPATHY B C, MAHANTA S. On a Class of Difference Sequences Related to the lp Space Defined by Orlicz Functions[J]. Mathematica Slovaca, 2007, 57(2): 171-178. doi: 10.2478/s12175-007-0007-6

    CrossRef Google Scholar

    [17] 吴德垠. 闭G-V模糊拟阵的导出圈公理[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 10-17.

    Google Scholar

    [18] 吴德垠, 杨高进. 闭模糊拟阵圈函数和圈区间的推广[J]. 西南大学学报(自然科学版), 2020, 42(2): 36-40.

    Google Scholar

    [19] KARAKAS A, ALTIN Y, ALTINOK H. Almost Statistical Convergence of Order β of Sequences of Fuzzy Number[J]. Soft Computing, 2016, 20(9): 3611-3616. doi: 10.1007/s00500-015-1720-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2193) PDF downloads(222) Cited by(0)

Access History

Other Articles By Authors

Almost Ideal λr-Statistical Convergence and Strongly Almost Ideal λr-Convergence of β of Sequences of Fuzzy Numbers with Respect to the Orlicz Function

Abstract: Based on the new approach of ideal statistical convergence, the λr-statistical convergence and almost statistical convergence, respectively, defined the fuzzy sequence about order β almost ideal λr-statistical convergence and strong almost ideal λr-convergence. An example of almost ideal λr-statistical convergence rather than statistical convergence shows that the new definition of ideal statistical convergence condition is weaker and wider. In addition, the relationship of the fuzzy sequence space $\tilde W$β(M, r, λ), $\tilde S$β(λ) and $\tilde S$β(M, r, λ) have been investigated, the more general fuzzy sequence of ideal convergence and strongly ideal convergence have been concluded.

  • 文献[1]提出了统计收敛的概念,随后文献[2-9]对其进行了深入研究. 在实际问题中,数据和信息往往是不确定的,而这种不确定性可以用模糊数[10]来表示,所以对模糊数列收敛问题的研究显得非常必要.文献[11]提出了模糊集合和模糊集合运算的概念,标志着模糊数学的诞生,开创了模糊系统与模糊控制理论的研究.文献[12]讨论了模糊数列的统计收敛,并将模糊数列的统计收敛用自然密度为0的模糊数列和普通收敛的模糊数列来表示. 文献[13]给出了理想的定义,提出并讨论了模糊数列的理想收敛. 文献[14]开始研究Orlicz序列空间,结果表明任何一个Orlicz序列空间lM包含一个同构于lp(1≤p < ∞)的子空间. 之后,文献[15-16]分别利用Orlicz函数推广了Orlicz序列空间lM和强可和序列空间.

    本文基于理想统计收敛的新途径,定义了关于序β几乎理想λr-统计收敛和强几乎理想λr-收敛,研究了两种收敛的性质,同时讨论了空间$\tilde W$β(Mrλ)和空间$\tilde S$β(λ),$\tilde S$β(Mrλ)之间的相互关系,得到了更为广泛的模糊数列理想统计收敛和强理想收敛的模糊数列空间.

1.   定义及说明
  • u为实数集$\mathbb{R} $上的模糊集,若u是正规的凸模糊集,隶属度函数u(x)上半连续,且支撑集

    为紧集,则称u为模糊数[17]. 记所有模糊数所组成的集合为E1. 对任意的0≤r≤1,水平截集[u]r={xu(x)≥r}是一个闭区间. 对uvE1k∈$\mathbb{R} $,加法和数乘分别定义为

    模糊数uvE1之间的距离定义为

    其中D表示Hausdorff距离,ur_,u+r(u_(r),u+(r)),vr_,v+r(v_(r),v+(r))分别是[u]r,[v]r的左右端点.0表示零模糊数[18].

    记$\mathbb{N} $是全体自然数组成的集合,集合A⊆$\mathbb{N} $的自然密度定义为

    其中|A|表示A的元素个数[19].

    若函数M:[0,∞)→[0,∞)是连续非降的凸函数,且M(0)=0,对x>0,有M(x)>0,$\lim\limits_{x \rightarrow \infty} M(x)=\infty$,则称函数M是Orlicz函数[19].

    λ={λm}是非降数列,M是Orlicz函数,r={rk}是正实数列. 对于ρ>0,0 < β≤1,模糊数列x={xk}关于序β几乎λr-统计收敛于模糊数x0,是指[19]

    其中

    定义1   设λ={λm}是非降数列,M是Orlicz函数,r={rk}是正实数列,对于ρ>0,0<β≤1,模糊数列x={xk}关于序β几乎理想λr-统计收敛于模糊数x0,是指

    记作xkx0($\tilde S$β(Mrλ)),关于序β几乎理想λr-统计收敛的模糊数列空间为

    其中

    注1  当β=1时,$\tilde S$β(Mrλ)=$\tilde S$(Mrλ),即几乎理想λr-统计收敛的模糊数列空间为

    注2  当β=1,λm=m时,$\tilde S$β(Mrλ)=$\tilde S$(Mr),即基于Orlicz函数几乎理想统计收敛的模糊数列空间为

    注3  当β=1,λm=mM(x)=xrk=1时,$\tilde S$β(Mrλ)=$\tilde S$I,即几乎理想统计收敛的模糊数列空间为

    例1  设I是自然密度0的自然数集$\mathbb{N} $的理想,A={12,22,32,…},定义模糊数列

    定义模糊数

    mA时,有

    即对任意给定的δ,存在M,使得对任意k>MmA,有

    mA时,有

    所以{xk}为几乎理想λr-统计收敛数列. 由以上讨论可知,当mA时,

    从而数列{xk}非统计收敛.

    定义2   设λ={λm}是非降数列,M是Orlicz函数,r={rk}是正实数列. 对ρ>0,0 < β≤1,定义下列关于序β强几乎理想λr-收敛的模糊数列空间:

    其中

    注4  设x∈$\widetilde{W}$β(Mrλ),x∈$\widetilde{W}$β0(Mrλ),x∈$\widetilde{W}$β(Mrλ),则分别称x={xk}关于序β强几乎理想λr-收敛于模糊数x0,强几乎理想λr-收敛于模糊数0-,强几乎理想λr-有界.

    注5  当β=1时,$\widetilde{W}$β(Mrλ)=$\widetilde{W}$(Mrλ),即强几乎理想λr-收敛的模糊数列空间为

    注6  当β=1,λm=m时,$\widetilde{W}$β(Mrλ)=(Mr),即基于Orlicz函数强几乎理想收敛的模糊数列空间为

    注7  当β=1,λm=mM(x)=xrk=1时,$\widetilde{W}$β(Mrλ)=I,即基于Orlicz函数强几乎理想收敛的模糊数列空间为

2.   模糊数列关于序β几乎理想λr-统计收敛的相关性质
  • 定理1  设x={xk},y={yk}是两个模糊数列,则:

    (ⅰ) 对任意实数C,若xkx0($\tilde S$β(Mrλ)),则CxkCx0($\tilde S$β(Mrλ));

    (ⅱ) 若xkx0($\tilde S$β(Mrλ))且yky0($\tilde S$β(Mrλ)),则xk+ykx0+y0($\tilde S$β(Mrλ)).

       (ⅰ) 当C=0时,结论显然成立. 设C≠0,有

    所以CxkCx0($\tilde S$β(Mrλ)).

    (ⅱ) 设xkx0($\tilde S$β(Mrλ)),yky0($\tilde S$β(Mrλ)),因为

    对于任意的ε>0,有

    可得

    定理2   设模糊数列x={xk}与关于序β几乎理想λr-统计收敛的模糊数列y={yk}几乎处处相等,则x={xk}关于序β几乎理想λr-统计收敛,而且与y={yk}收敛于同一模糊数.

       因为xk=yk几乎处处成立,所以集合{k∈$\mathbb{N} $:xkyk}有限,设为S=S(ε). 则

    所以

    因此模糊数列x={xk}关于序β几乎理想λr-统计收敛.

3.   模糊数列关于序β强几乎理想λr-收敛的相关性质
  • 定理3   设λ={λm}是非降数列,M是Orlicz函数,r={rk}有界,则

       显然

    其中

    存在K=δ,使得

    因此,模糊数列x={xk}∈$\tilde W$β(Mrλ). 故

    定理4   设M1M2是Orlicz函数,则以下结论成立:

    (ⅰ) $\tilde W$β0(M1rλ)∩$\tilde W$β0(M2rλ)⊂$\tilde W$β0(M1+M2rλ);

    (ⅱ) $\tilde W$β(M1rλ)∩$\tilde W$β(M2rλ)⊂$\tilde W$β(M1+M2rλ);

    (ⅲ) $\tilde W$β(M1rλ)∩$\tilde W$β(M2rλ)⊂$\tilde W$β(M1+M2rλ).

       (ⅰ) 设

    x∈$\tilde W$β0(M1rλ),x∈$\tilde W$β0(M2rλ). 因此,对任意δ>0,ρ1>0,ρ2>0,取ρ=min{ρ1ρ2},有

    x∈$\tilde W$β0(M1+M2rλ).

    (ⅱ),(ⅲ)的证明与(ⅰ)相似.

4.   空间$\tilde W$β(Mrλ)与空间$\tilde S$β(λ),$\tilde S$β(Mrλ)之间的相互关系
  • 定理5   设$0 < h=\inf\limits_{k} p_{k}=H < \infty, \lambda=\left\{\lambda_{m}\right\}$是非降数列,则$\tilde W$β(Mrλ)⊂$\tilde S$β(λ),其中

       假设$\varepsilon_{1}=\frac{\varepsilon}{\rho}$,那么

    其中

    因此x∈$\tilde S$β(λ),$\tilde W$β(Mrλ)⊂$\tilde S$β(λ).

    定理6   设p={pk}有界,λ={λm}是非降数列,则$\tilde W$β(Wrλ)⊂$\tilde S$β(Mrλ).

       记

    x∈$\tilde W$β(Mrλ),则

    因为

    所以

    因此x∈$\tilde S$β(Mrλ),故β(Wrλ)⊂$\tilde S$β(Mrλ).

5.   结论
  • 本文基于理想统计收敛的新途径,构建了λr-统计收敛和几乎统计收敛的框架,分别定义了模糊数列关于序β几乎理想λr-统计收敛和强几乎理想λr-收敛,给出了模糊数列几乎理想λr-统计收敛而非统计收敛的具体算例.同时,讨论了模糊数列空间$\tilde W$β(Mrλ)和空间$\tilde S$β(λ),$\tilde S$β(Mrλ)之间的包含关系,得到了更为广泛的模糊数列理想统计收敛和强理想收敛的数列空间.

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return