Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 8
Article Contents

MIAO Liangying, FENG Dengjuan. Existence of 3 Positive Solutions for a Class of Dirichlet Problem of Quasilinear Differential Equation with Mean Curvature Operator[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(8): 32-37. doi: 10.13718/j.cnki.xsxb.2022.08.005
Citation: MIAO Liangying, FENG Dengjuan. Existence of 3 Positive Solutions for a Class of Dirichlet Problem of Quasilinear Differential Equation with Mean Curvature Operator[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(8): 32-37. doi: 10.13718/j.cnki.xsxb.2022.08.005

Existence of 3 Positive Solutions for a Class of Dirichlet Problem of Quasilinear Differential Equation with Mean Curvature Operator

More Information
  • Received Date: 03/10/2021
    Available Online: 20/08/2022
  • MSC: O175.8

  • In this paper, by means of the fixed point index theorem, we have studied the existence of at least 3 positive solutions for Dirichlet problem of quasilinear differential equation with mean curvature operator in Euclidean space $ \left\{\begin{array}{l} -\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda f(x, u) \quad x \in(0, 1) \\ u(0)=u(1)=0 \end{array}\right. $ where \lt i \gt λ \lt /i \gt \gt 0 is parameter, \lt i \gt f \lt /i \gt ∈ \lt i \gt C \lt /i \gt ([0, 1]×[0, ∞), [0, ∞)) and \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt s \lt /i \gt ) \gt 0, \lt i \gt s \lt /i \gt \gt 0, \lt i \gt x \lt /i \gt ∈[0, 1]. And, finally, an example has been given to verify the correctness of the main result.
  • 加载中
  • [1] CANO-CASANOVA S, LÓPEZ-GÓMEZ J, TAKIMOTO K. A Quasilinear Parabolic Perturbation of the Linear Heat Equation[J]. Journal of Differential Equations, 2012, 252(1): 323-343. doi: 10.1016/j.jde.2011.09.018

    CrossRef Google Scholar

    [2] COFFMAN C V, ZIEMER W K. A Prescribed Mean Curvature Problem on Domains without Radial Symmetry[J]. SIAM Journal on Mathematical Analysis, 1991, 22(4): 982-990. doi: 10.1137/0522063

    CrossRef Google Scholar

    [3] PAN H J, XING R X. Sub- and Supersolution Methods for Prescribed Mean Curvature Equations with Dirichlet Boundary Conditions[J]. Journal of Differential Equations, 2013, 254(3): 1464-1499. doi: 10.1016/j.jde.2012.10.025

    CrossRef Google Scholar

    [4] FINN R. On the Equations of Capillarity[J]. Journal of Mathematical Fluid Mechanics, 2001, 3(2): 139-151. doi: 10.1007/PL00000966

    CrossRef Google Scholar

    [5] CORSATO C, DE COSTER C, OMARI P. The Dirichlet Problem for a Prescribed Anisotropic Mean Curvature Equation: Existence, Uniqueness and Regularity of Solutions[J]. Journal of Differential Equations, 2016, 260(5): 4572-4618. doi: 10.1016/j.jde.2015.11.024

    CrossRef Google Scholar

    [6] BONHEURE D, HABETS P, OBERSNEL F, et al. Classical and Non-Classical Solutions of a Prescribed Curvature Equation[J]. Journal of Differential Equations, 2007, 243(2): 208-237. doi: 10.1016/j.jde.2007.05.031

    CrossRef Google Scholar

    [7] HABETS P, OMARI P. Multiple Positive Solutions of a one-Dimensional Prescribed Mean Curvature Problem[J]. Communications in Contemporary Mathematics, 2007, 9(5): 701-730. doi: 10.1142/S0219199707002617

    CrossRef Google Scholar

    [8] KUSAHARA T, USAMI H. A Barrier Method for Quasilinear Ordinary Differential Equations of the Curvature Type[J]. Czechoslovak Mathematical Journal, 2000, 50(1): 185-196. doi: 10.1023/A:1022409808258

    CrossRef Google Scholar

    [9] PAN H J. One-Dimensional Prescribed Mean Curvature Equation with Exponential Nonlinearity[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(2): 999-1010.

    Google Scholar

    [10] PAN H J, XING R X. Time Maps and Exact Multiplicity Results for One-Dimensional Prescribed Mean Curvature Equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74(4): 1234-1260.

    Google Scholar

    [11] LU Y Q, MA R Y, GAO H L. Existence and Multiplicity of Positive Solutions for One-Dimensional Prescribed Mean Curvature Equations[J]. Boundary Value Problems, 2014, 2014: 120. doi: 10.1186/1687-2770-2014-120

    CrossRef Google Scholar

    [12] CORSATO C, OMARI P, ZANOLIN F. Subharmonic Solutions of the Prescribed Curvature Equation[J]. Communications in Contemporary Mathematics, 2016, 18(3): 1550042. doi: 10.1142/S021919971550042X

    CrossRef Google Scholar

    [13] LÓPEZ-GÓMEZ J, OMARI P, RIVETTI S. Positive Solutions of a One-Dimensional Indefinite Capillarity-Type Problem: a Variational Approach[J]. Journal of Differential Equations, 2017, 262(3): 2335-2392. doi: 10.1016/j.jde.2016.10.046

    CrossRef Google Scholar

    [14] HE Z Q, MIAO L Y. Uniqueness and Multiplicity of Positive Solutions for One-Dimensional Prescribed Mean Curvature Equation in Minkowski Space[J]. AIMS Mathematics, 2020, 5(4): 3840-3850. doi: 10.3934/math.2020249

    CrossRef Google Scholar

    [15] DEIMLING K. Nonlinear Functional Analysis[M]. Berlin: Springer, 1985.

    Google Scholar

    [16] MANÁSEVICH R, MAWHIN J. Boundary Value Problems for Nonlinear Perturbations of Vector P-Laplacian-Like Operators[J]. Journal of the Korean Mathematical Society, 2000, 37: 665-685.

    Google Scholar

    [17] WANG H Y. On the Number of Positive Solutions of Nonlinear Systems[J]. Journal of Mathematical Analysis and Applications, 2003, 281(1): 287-306.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(594) PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Existence of 3 Positive Solutions for a Class of Dirichlet Problem of Quasilinear Differential Equation with Mean Curvature Operator

Abstract: In this paper, by means of the fixed point index theorem, we have studied the existence of at least 3 positive solutions for Dirichlet problem of quasilinear differential equation with mean curvature operator in Euclidean space $ \left\{\begin{array}{l} -\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda f(x, u) \quad x \in(0, 1) \\ u(0)=u(1)=0 \end{array}\right. $ where \lt i \gt λ \lt /i \gt \gt 0 is parameter, \lt i \gt f \lt /i \gt ∈ \lt i \gt C \lt /i \gt ([0, 1]×[0, ∞), [0, ∞)) and \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt s \lt /i \gt ) \gt 0, \lt i \gt s \lt /i \gt \gt 0, \lt i \gt x \lt /i \gt ∈[0, 1]. And, finally, an example has been given to verify the correctness of the main result.

  • 近年来,许多学者[1-13]研究了如下微分方程Dirichlet问题

    正解的存在性和多解性,并取得了许多深刻的结果. 这里Ω$ \mathbb{R}^{n} $n≥2空间中的有界区域. 值得注意的是,当κ=0时,问题(1)退化为半线性Dirichlet问题;而当κ≠0时,上述问题为拟线性微分方程Dirichlet问题. 特别地,当κ=-1时,问题(1)退化为Minkowski空间中给定平均曲率方程Dirichlet问题;当κ=1时,问题(1)退化为Euclidean空间中给定平均曲率方程Dirichlet问题. 本文主要考察κ=1的情形. 需要说明的是,当κ=1时,给定平均曲率问题(1)有重要的应用背景,例如可刻画可压缩流体的毛细现象以及人类角膜的几何形状[4-5].

    研究Euclidean空间中给定平均曲率方程Dirichlet问题有很大的挑战性. 如文献[9-11]中所示,当κ=1时,问题(1)为一类拟线性非一致椭圆问题,研究这类问题最大的障碍是缺乏梯度估计. 例如,即便在最简单的一维空间下,问题(1)解的梯度也会出现爆破现象.

    最近,一些学者[6-13]分别利用变分法、上下解方法、时间映像法、不动点理论研究了一维给定平均曲率方程Dirichlet问题

    正解的存在性和多解性,其中λ为正参数,fC([0,∞),[0,∞)) 并且f(s)>0,s>0. 据我们所知,这些文献并未研究问题(2)至少3个正解的存在性. 注意到,问题(2)是一维的自治问题,其解u(x) 在$ x= \frac {1}{2} $处是对称的,因此可利用解的凹凸性来构造适当的锥. 自然地,当非线性项f不仅与u有关,还与x有关时,能否利用不动点理论研究问题(2)至少3个正解的存在性呢?

    受以上文献的启发,本文将利用锥上的不动点定理研究问题(2)更为广泛的情形,确切地说,我们研究问题

    至少3个正解的存在性. 这里$ \phi \left( s \right) = \frac{s}{{\sqrt {1 + {s^2}} }} $,显然,$ \phi :\mathbb{R}\to \left( -1, 1 \right) $是奇的、递增的同胚并且满足ϕ(0)=0. 需要指出的是,在这种情况下,问题(3)的解u(x)在$ x= \frac {1}{2} $处不具有对称性,因而利用不动点理论研究问题(3)正解的个数时,首要任务是构造一个巧妙的锥.

    本文总假定

    (H) fC([0, 1]×[0,∞),[0,∞))且f(xs)>0,s>0,x∈[0, 1].

    本文的主要结果

    定理1  假设f满足条件(H). 若f0=f=0,则存在λ*λ*>0使得当λ* < λ < λ*时,问题(3)至少存在3个正解.

    注1  在文献[14]中,我们构造了一个合适的锥研究了Minkowski空间中一维给定平均曲率方程Dirichlet问题3个以及多个正解的存在性. 但据我们所知,还没有学者研究欧氏空间中给定平均曲率型方程Dirichlet问题3个正解的存在性.

1.   预备知识
  • 我们令

    E为装备了范数$ {\left\| u \right\|_\infty } = \mathop {\max }\limits_{x \in \left[ {0, 1} \right]} \left| {u\left( x \right)} \right| $的Banach空间.

    引理1 [15]  设E是Banach空间,KEE中的一个锥. 对任意的r>0,定义Kr={xK:‖x‖ < r}. 假设TKrK是全连续的,使得对任意的x∂Kr={xK:‖x‖=r},Txx.

    (i) 若‖Tx‖≥‖x‖,x∂Kr,则i(TKrK)=0.

    (ii) 若‖Tx‖≤‖x‖,x∂Kr,则i(TKrK)=1.

    引理2 [11]   $ \phi :\mathbb{R}\to \left( -1, 1 \right) $是奇的、递增的同胚并且满足ϕ(0)=0,此外ϕ$ {\phi ^{ - 1}}\left( {{\phi ^{ - 1}} = \frac{s}{{\sqrt {1 + {s^2}} }}} \right) $有如下性质

    (i) ϕ在[0,∞)上是上凸的,ϕ-1在[0,1)上是上凸的;

    (ii) 对任意的0 < c≤1,存在Bc>c使得ϕ-1(cs)≤Bcϕ-1(s),∀s∈(0,1). 对任意的c≥1满足-1 < cs < 1,存在Acc使得ϕ-1(cs)≥Ac ϕ-1(s),∀s∈(0,1).

    引理3 [11]  令hC([0, 1],[0,∞))且$ \not \equiv $0. 假设w

    的解,则w(x)>0,x∈(0,1)且‖w′‖ϕ-1(M),其中$ M = \min \left\{ {1, {{\sup }_{x \in \left[ {0, 1} \right]}}\left| {h\left( x \right)} \right|} \right\} $.

    引理3表明,存在$ {\tau _i} \in \left( {0, \frac{1}{2}} \right), i = 1, 2 $使得$ \min\limits_{\left[\tau_{1}, 1-\tau_{2}\right]} w(x) \geqslant \sigma\|\tau\|_{\infty} $,其中0 < σ < 1依赖于τi. 定义E中的锥P,其中

    定义$ f^{*}(r)=\max\limits_{0 \leqslant s \leqslant 1, 0 \leqslant t \leqslant r}\{f(s, t)\} $,对任意的r>0,令Ωr={uP|‖u < r},∂Ωr={uP|‖u=r}.

    引理4 [16]  对任意的hC[0, 1],(4)式存在唯一解u,其中

    这里$ 0 < C < \int_0^1 h (t){\rm{d}}t $满足u(1)=0. 此外,算子ThEE是全连续算子.

    用文献[11]的方法和引理4可知,问题(3)的解等价于证明

    存在不动点,其中$ 0 <{C_0} < \lambda \int_0^1 {f\left( {u(t)} \right)} {\rm{d}}t $满足u(1)=0. 由引理4可知TλEE是全连续映射. 此外,对任意固定的uP,我们有

    Tλ(u)(0)=Tλ(u)(1)=0. 此外,由引理3可得Tλ(u)(x)>0,x∈(0,1)并且存在$ {\tau _i} \in \left( {0, \frac{1}{2}} \right), i = 1, 2 $,使得$ {\min\limits_{\left[ {{\tau _1}, 1 - {\tau _2}} \right]}}{T_\lambda }u \ge \sigma {\left\| {{T_\lambda }u} \right\|_\infty } $. 因此,TλPP为全连续算子.

    引理5  给定r>0,若ε>0足够小满足Bλε < 1且f*(r)≤εϕ(r),则

    其中Bλε如引理2(ii)所示.

      由Tλ的定义,对任意的u∂Ωr,我们有

    引理6  给定r>0,若u∂Ωr,则

    其中$ M_{r}=\max\limits_{0 \leqslant t \leqslant 1, 0 \leqslant u \leqslant r} f(t, u)>0 $.

      对任意的u∂Ωr,则有f(u(x))≤Mrx∈[0, 1],从而有

    引理7 [11]  给定r>0,若u∂Ωr,则

    其中$ m_{r}=\min\limits_{0 \leqslant x \leqslant 1, \sigma r \leqslant u \leqslant r} f(x, u)>0 $并且x*=min{x0,1-x0}且$ u\left(x_{0}\right)=\max\limits_{x \in[0, 1]} u(x)=\|u\|_{\infty} $.

2.   主要结果的证明
  • 定理1的证明  令λ*>0为$ \lambda \int_{0}^{\bar{r}} f(u) \mathrm{d} u=1 $的解,其中r:=u(x0)=‖u. 则当0 < λ < λ*时,

    选取正常数rii=2,3,4,5,使得0 < r2 < r3 < r4 < r5 < r满足

    由引理7可知,存在

    并且

    使得对λ* < λ < λ*,我们有

    由引理1可知,i(TλΩriP)=0,i=2,3,5.

    对于给定常数r4>0. 由引理6可知,当0 < λλ*时,‖Tλu < ‖uu∂Ωr4. 由引理1可知,i(TλΩr4P)=1. 则

    另一方面,若f0=0,利用文献[17]引理2.8相同的方法可证f0*=0. 这里,$ f_{0}^{*}:=\lim\limits_{u \rightarrow 0} \max\limits_{t \in[0, 1]} \frac{f^{*}(u)}{u} $$ {f^*}\left( s \right) = \mathop {\max }\limits_{0 \le t \le s} \left\{ {f\left( {x, t} \right)} \right\} $对一致的x∈[0, 1] 均成立. 选择$ r_{1} \in\left(0, \frac{r_{2}}{2}\right) $使得f*(r1)≤εϕ(r1),其中ε>0足够小满足

    由引理5可知,当0 < λ < λ*时,

    由引理1可得i(TλΩr1P)=1. 则

    最后,若f=0,λ < λ*,则由引理7可知

    i(TλΩrP)=1. 则有

    因此,当λ* < λ < λ*时,Tλ至少存在3个不同的不动点uii=1,2,3使得u1Ωr2\Ωr1u2Ωr4\Ωr3u3Ωr\Ωr5并且

    因此,问题(3)至少存在3个不同的正解.

    例1  考虑如下含平均曲率算子的拟线性微分方程Dirichlet问题

    正解的存在性和多解性,其中

    显然,f满足条件(H)且f0=f=0. 由定理1可知,问题(5)至少存在3个正解.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return