-
B类Kadomtsev-Petviashvili(BKP)系统是一个被广泛研究的受多重约束的非线性KP系统[1],这里的B表示奇维正交群,满足额外(Lp)-=0,p∈
$\mathbb{N} $ odd约束的BKP系统形成的p约化BKP系统. 其中3约化BKP系统能导出著名的非线性偏微分方程Sawada-Kotera方程[2-3],并被广泛用于共形场理论和二维量子引力规范场理论. 弦方程是弦理论中的主要研究对象,也是连接可积层次与可解弦理论和相交理论的重要约束[3],还与一些类KP系统的可积方程密切相关,受到了广泛的关注. 在二维量子引力中,文献[4]证明了模空间交集理论的配分函数恰好是弦方程约束KdV系统的τ函数的对数. 由于附加对称性的不动点集在KP系统是不变的,所以弦方程对由KdV系统可积方程产生的流是不变的,而弦方程恰好是这种平衡性的条件[5]. 近年来,众多学者试着把Kontsevich的结论推广到更高维和多约束的情况,而BKP恰好是主要研究对象之一[6-8]. 文献[9]给出了BKP系统的ASvM公式. 文献[10]受KP系统的启发,基于Dickey的方法给出了BKP系统的ASvM公式的另一种证明. 文献[11]研究了BKP系统的弦方程以及BW1+∞. 文献[3]又从Lax-Orlov-Schulman公式中附加对称性的角度重新考虑BKP系统的弦方程.然而,通过分析发现文献[3, 11]中的弦方程的引入会导致数学上的矛盾,即会使得L-p=0,从而使系统退化成为最平凡的情况,失去研究的意义. 因此,本文将在如下p约化BKP系统可积系统里重新探讨BKP系统的弦方程:
其中:
$t = \left( {{t_1}, {t_3}, {t_5}, \cdots } \right), L = \partial + \sum\limits_{i = 1}^\infty {{u_i}} (t){\partial ^{ - i}}, \Psi = 1 + \sum\limits_{j = 1} {{\omega _j}} {\partial ^{ - j}}$ ,$M=\Psi \Gamma \Psi^{-1}, \Gamma=\sum_{n=0}(2 n+$ ${\rm{ 1) }}{t_{2n + 1}}{\partial ^{2n + 1}}, {\left( {{L^p}} \right)_ - } = \sum\limits_{i - \infty }^{ - 1} g (t){\partial ^i}, {\left( {{L^p}} \right)_ + } = \sum\limits_{i = 0}^p f (t){\partial ^i}$ .由于p约化条件的限制,在BKP系统中,{tmp,m∈
$\mathbb{N} $ odd}和{∂mp,m∈$\mathbb{N} $ odd}成为冗余变量需要去掉. 而现有一些关于BKP系统的研究忽略了这一问题,所以本文在得到弦方程约束算子后,先得到无冗余变量的算子{$\hat V$ jp(i)},再以此为基础,研究弦方程加在BKP系统上产生的约束的代数结构. 经过复杂的计算,发现无冗余变量的弦方程约束算子恰好能张成特殊的Lie代数[12-14]以及Virasoro代数. 因为Virasoro代数是共形场论中的一类重要代数,所以弦方程在代数结构上与相关共形场论理论有一定的联系,这也和现有的关于非线性Korteweg-de Vries(KdV)方程的经典结果是相容的. 这一相容的良好的代数结构,也从另一个角度说明了本文给出的优化弦方程定义的合理性.
HTML
-
本节主要证明现有文献中BKP系统弦方程的定义会产生的数学上的矛盾,并对BKP系统弦方程的定义进行重新优化,然后从此定义出发重新计算弦方程的附加对称算子表达式.
本文将BKP系统的弦方程[11]认定为
其中算子L满足L-p=0,p∈
${\mathbb{Z}}$ odd. p约化的BKP系统也是由这样的算子L所定义. 而M是Orlov Schulman算子,满足[L,M]=1. 在此令(∑nxn∂n)+=(∑n≥0xn∂n),(∑nxn∂n)-=(∑n≤0xn∂n).因为弦方程里的Lp是一个微分算子. 由于LpL-p=1,故L-p不能等于0. 如果L-p=0,则L就是一个等于0的算子,这失去了意义. 为了规避L-p=0这个矛盾,文献[3]利用如下方程
来导出BKP系统的弦方程. 而由(3)式和(L-p)-=L-p可得(ML1-2p)-=pL-2p. 然而通过计算发现(3)式和BKP系统的弦方程经过如下一些变换仍然会产生L-p=0这个矛盾:
1) 对(L-2pML)-做变换
2) 对(L-pML)-做两种不同变换
对比(6)式和(5)式左右两端可得(ML-p+1)-=0,将此结果代入BKP系统的弦方程里,则又可得到L-p=0这个矛盾的结果. 因此,本文只将(2)式当做BKP系统的弦方程. 则(2)式中的ML1-p-pL-p是一个纯微分算子,可得ML-1-p=pL-p. 又由BKP系统的附加对称性[6]可得
其中
$\partial _{m, l}^* = \frac{\partial }{{\partial t_{m, l}^*}}$ ,ω(t,k)是波函数,则通过弦方程能计算得到附加对称性算子表达式,也即如下命题1. 命题1与文献[3]有所不同.命题1 如果由弦方程限制的Lax算子Lp满足p约化的BKP系统,则下列等式成立
-
本节中,先用附加对称算子表达式算出弦方程约束在BKP系统波函数和τ函数上的表达式,然后给出弦方程加在p约化BKP系统的τ函数上所生成的无冗余变量的弦方程约束算子{
$\hat V$ jp|j=-1,0,1,2…},其中τ函数[16-17]是他们共同的特征函数. 本文与现有结果不同的是对弦方程约束的算子做了去冗余变量{tmp}和{∂mp}的处理,这是由于p约化的BKP系统的τ函数不含有冗余变量{tmp|m∈$\mathbb{N} $ }.首先,用波函数来表示对称性算子表达式(8)和(9),即让(8)式和(9)式作用在波函数上,可得
其中:
$\omega (t, k) = \frac{{G(k)\tau (t)}}{{\tau (t)}}{e^{\xi (t, k)}}$ ,G(k)τ(t)=τ(t-2[k-1]).接着,利用ASVM公式[6]∂m,m+l*τ(t)=Zl(m+1)(τ(t))可得
再将(11)式代入(10)式中,可得到弦方程对p约化的BKP层次结构的τ函数施加的约束方程[3]
根据算子G(k)的性质可得
再根据文献[3]中Zl(1)=Wl(1),
$Z_l^{(m + 1)} = \frac{{W_l^{(m + 1)}}}{{m + 1}} + \frac{1}{2}W_l^{(m)}$ ,m≥1,可得然后,从(14)式中确定具体的无冗余变量的弦方程约束算子. 为此,先引入顶点算子
其中符号“::”表示Ji < 0放Ji>0的左边. 当i∈
${\mathbb{Z}}$ odd+时,Ji=2∂i;当i∈${\mathbb{Z}}$ odd-时,Ji=|i|ti. 接着将顶点算子XB(λ,μ)在μ=λ处泰勒展开,其中∑n=-∞∞λ-m-lWn(m)=∂μm|μ=λXB(λ,μ). 由此可计算得到Wn(m)的前几项其中
与KP系统里的{Vn(l)}有所不同,BKP系统的{Vn(l)}只有n和l都是奇数或者都是偶数时才存在,这导致了BKP与KP系统里的{Wn(m)}不同. {Wn(m)|n∈
${\mathbb{Z}}$ even}不同于{Wn(m)|∈${\mathbb{Z}}$ odd},例如:W2n(2)=V2n(2),W2n+1(2)=-(2n+1+1)V2n+1(1).根据(22)式可知{Wn(m)}可以由Vn(m),Vn(m-1),…,Vn(1)线性表示. 而{Wn(m)}和{Vn(m)}之间的变换矩阵是下三角矩阵,所以{Vn(m)}也可以由Wn(m),Wn(m-1),…,Wn(1)线性表示. 因此,以下命题成立.
命题2 对于任意的m∈
$\mathbb{N} $ ,{Wn(m)}和{Vn(m)}可以相互线性表示.其中{cnm,l|m,l∈
$\mathbb{N} $ ,n∈${\mathbb{Z}}$ },{c′nj,l| j,l∈$\mathbb{N} $ ,n∈${\mathbb{Z}}$ }都能计算出.由于p约化的BKP系统的τ函数并不含有冗余变量tmp,所以要将这些算子的冗余变量去掉. 为了方便表示引入下列符号:用
$\tilde V_n^{(j)}$ 和$\tilde W_n^{(j)}$ 表示包含的所有项都不含变量{J-mp|m∈$\mathbb{N} $ }中的任一项,用$\mathop {V_n^{\left( j \right)}}\limits^{ \vee \;\;\;\;} $ 和$\mathop {W_n^{\left( j \right)}}\limits^{ \vee \;\;\;\;} $ 表示包含的所有项均至少含变量{J-mp|m∈$\mathbb{N} $ }中的一项.然而去掉变量tmp后,变量∂mp(or Jmp)也变得冗余. 因此,冗余变量{Jmp|m∈
${\mathbb{Z}}$ }也需要去掉. 同样的引入一些符号,用$\hat V$ n(j)和$\hat W_n^{(j)}$ 表示包含的所有项都不含变量{J-mp|m∈${\mathbb{Z}}$ }中的任一项,用$\ddot V_n^{(j)}$ 和$\ddot W_n^{(j)}$ 表示包含的所有项均至少含变量{J-mp|m∈${\mathbb{Z}}$ }中的一项.最后,根据命题2里对于任意的m∈
$\mathbb{N} $ ,{Wn(m)}和{Vn(m)}可以相互线性表示. 将弦方程约束算子{$\hat V$ jp|j=-1,0,1,2…}作用在τ函数上便可得到如下结论.定理1 如果τ函数τ(t)是p约化BKP系统的且满足弦方程,则
其中λj(i)是τ函数的特征值,算子
$\tilde V_{jp}^{(i)}$ 只有当j,p和i都是奇数或都是偶数时存在.
-
本节进一步研究弦方程加在BKP系统的约束所形成的代数结构. 通过计算发现二阶弦方程约束算子
$\hat V$ jp(2)恰好可以生成特殊的Lie代数,即非负的Virasoro代数;三阶弦方程约束算子也可以生成特殊的Lie代数,即p约化的W代数,说明其具有良好的内部结构.为方便计算代数结构,先将Vn(2)和Vn(3)按冗余变量{Jmp|m∈
${\mathbb{Z}}$ odd}展开.接着,计算二阶与三阶的弦方程约束的算子的对易子.
-
引理1 对于任意的n∈
${\mathbb{Z}}$ ,p≥3且p∈$\mathbb{N} $ odd,{$\hat V$ 2np(2)}存在以下的对易关系证 通过复杂计算,可以有以下对易子[15]
然后根据(37)式将(40)式的左边表示成
通过直接计算可得
将(42)式和(41)式代入(40)式里,可得
将(43)式两边相同的项消掉,然后在所得式子两边除以p2,就可得到{
$\hat V$ 2np(2)}之间的对易关系(39).弦方程限制的算子{
$\hat V$ jp(2)}的下指标j的取值范围为{0,1,2,…}. 在引理1的基础上,经过一个简单变换,便可得到以下定理.定理2 记
$Y_k^{(2)} = \frac{1}{{4p}}\hat V_{2kp}^{(2)}$ ,则(44) 式表明{Yk(2)|k=0,1,2,…}恰好形成一个非负Virasoro代数.
-
推论1 对于任意的n∈
${\mathbb{Z}}$ ,p≥3且p∈$\mathbb{N} $ odd,{$\hat V$ 2np(2)}和{$\hat V$ 2np+1(3)}存在以下对易关系,证 计算得到以下对易子[15]
再将(33)式代入(46)式,可得
然后,利用(37)式和(38)式将(47)式的左边写成如下形式
最后,将(48)式代入(47)式后,消掉相同的项便可得到(45)式所示{
$\hat V$ 2np(2)}和{$\hat V$ 2np+1(3)}对易关系.因弦方程约束算子{
$\hat V$ jp(3)}的下指标j取值范围为{-1,0,1,2,…},则有从(49)式可以看出{
$\hat V$ 2k(2)}和{$\hat V$ 2l+1(3)}能形成一个W代数.上述结论表明弦方程约束算子{
$\hat V$ jp(i)}也有很好的代数结构,这可以看作是Virasoro代数的扩展. 这也是BKP系统不同于其他KP系统的一个特殊性质. 其代数结构和现有的KP系统也是相容的,从而验证了本文的BKP系统弦方程的定义的正确性.
3.1.
{$\hat V$ 2k(2)}和{$\hat V$ 2l(2)}的代数结构标题布置
3.2.
{$\hat V$ 2k(2)}和{$\hat V$ 2l+1(3)}的代数结构
-
本文先重新优化了BKP弦方程的定义,并从此定义出发给出了弦方程加在p约化BKP系统的τ函数上所生成的无冗余变量的弦方程约束算子{
$\hat V$ jp|j=-1,0,1,2…}. 通过计算,发现弦方程加在BKP系统的约束形成良好的Lie代数、非负的Virasoro代数和W代数. 这为进一步探索非线性可积系统与二维共形场论的内在联系打下基础. 我们将继续探索BKP系统的弦方程的无冗余变量约束算子的性质,进一步尝试探索弦方程约束算子对应p约化BKP系统的τ函数的代数性质.