Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 48 Issue 6
Article Contents

MA Haicheng, YOU Xiaojie. Matching Polynomials of a Class of Cylinders and Möbius Strip[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(6): 35-42. doi: 10.13718/j.cnki.xsxb.2023.06.005
Citation: MA Haicheng, YOU Xiaojie. Matching Polynomials of a Class of Cylinders and Möbius Strip[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(6): 35-42. doi: 10.13718/j.cnki.xsxb.2023.06.005

Matching Polynomials of a Class of Cylinders and Möbius Strip

More Information
  • Received Date: 06/10/2022
    Available Online: 20/06/2023
  • MSC: O157.5

  • Given two paths with n vertices, their vertices are marked as 1, 2, …, n and 1′, 2′, …, n′ from left to right respectively. The ladder Ln, n is obtained by connecting the vertices i and i′ on these two paths with one edge for i=1, 2, …, n, respectively. The cylinder Zn, n is obtained by connecting the vertices 1 and n, and the vertices 1′ and n′ with one edge on the ladder Ln, n, respectively. The Möbius strip Mn, n is obtained by connecting the the vertices 1 and n′, and the vertices 1′ and n with one edge respectively on the ladder Ln, n That is, Ln, n=Pn×P2, Zn, n=Cn×P2. In this paper, the matching polynomials of ladders, cylinder and Möbius strip are calculated by using recursive relationships and generation functions. In addition, the number of perfect matching on these graphs are also calculated.
  • 加载中
  • [1] FARRELL E J. An Introduction to Matching Polynomial[J]. Journal of Combinatorial Theory(Series B), 1979, 27(1): 75-86. doi: 10.1016/0095-8956(79)90070-4

    CrossRef Google Scholar

    [2] GODSIL C D, GUTMAN I. On the Theory of the Matching Polynomials[J]. Journal of Graph Theory, 1981, 5(2): 137-144. doi: 10.1002/jgt.3190050203

    CrossRef Google Scholar

    [3] HEILMANN O J, LIEB E H. Theory of Monomer-Dimer Systems[J]. Communications in Mathematical Physics, 1972, 25: 190-232. doi: 10.1007/BF01877590

    CrossRef Google Scholar

    [4] GUTMAN I, WAGNER S. The Matching Energy of a Graph[J]. Discrete Applied Mathematics, 2012, 160: 2177-2187. doi: 10.1016/j.dam.2012.06.001

    CrossRef Google Scholar

    [5] HOSOYA H. Topological Index, A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons[J]. Bulletin of the Chemical Society of Japan, 1971, 44(9): 2332-2339. doi: 10.1246/bcsj.44.2332

    CrossRef Google Scholar

    [6] GUTMAN I. A Note on Analogies Between the Characteristic and the Matching Polynomial of a Graph[J]. Publications DE Linstitut Mathematique, 1982, 31: 27-31.

    Google Scholar

    [7] GODSIL C D. Hermite Polynomials and a Duality Relation for Matchings Polynomials[J]. Combinatorica, 1981, 1(3): 257-262. doi: 10.1007/BF02579331

    CrossRef Google Scholar

    [8] FARRELL E J, WHITEHEAD E G. Connections Between the Matching and Chromatic Polynomials[J]. International Journal of Mathematics and Mathematical Sciences, 1992, 15(4): 757-766. doi: 10.1155/S016117129200098X

    CrossRef Google Scholar

    [9] GODSIL C D. Algebraic Combinatorics[M]. New York: Chapman & Hall, 1993.

    Google Scholar

    [10] ZHANG F J, ZHENG M L. Matching Polynomial of Special Graphs[J]. 新疆大学学报, 1989, 6(1): 1-4.

    Google Scholar

    [11] ZHANG F J, ZHOU M K. Matching Polynomials of Two Classes of Graphs[J]. Discrete Applied Mathematics, 1998, 20(3): 253-260.

    Google Scholar

    [12] YAN W G, YEH Y N, ZHANG F J. On the Matching Polynomials of Graphs with Small Number of Cycles of Even Length[J]. International Journal of Quantum Chemistry, 2005, 105(2): 124-130. doi: 10.1002/qua.20670

    CrossRef Google Scholar

    [13] YAN W G, YEH Y N. On the Matching Polynomial of Subdivision Graphs[J]. Discrete Applied Mathematics, 2009, 157(1): 195-200. doi: 10.1016/j.dam.2008.05.005

    CrossRef Google Scholar

    [14] 马海成, 李生刚. 图的多项式与Hosoya指标[J]. 东北师大学报(自然科学版), 2013, 45(4): 41-44.

    Google Scholar

    [15] 马海成. 匹配最大根小于2的图的匹配等价类[J]. 系统科学与数学, 2003, 23(3): 337-342.

    Google Scholar

    [16] 马海成. 匹配最大根小于等于2的图的匹配等价[J]. 数学学报, 2006, 49(6): 1355-1360.

    Google Scholar

    [17] 马海成. 路并的匹配等价图数[J]. 西南师范大学学报(自然科学版), 2007, 32(3): 6-9.

    Google Scholar

    [18] 高尚, 马海成. 2K1In的匹配等价图类[J]. 西南大学学报(自然科学版), 2022, 44(2): 82-88.

    Google Scholar

    [19] 李丹阳, 马海成. 一个点并路的补图的色等价图类[J]. 西南大学学报(自然科学版), 2022, 44(4): 110-116.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(1020) PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Matching Polynomials of a Class of Cylinders and Möbius Strip

Abstract: Given two paths with n vertices, their vertices are marked as 1, 2, …, n and 1′, 2′, …, n′ from left to right respectively. The ladder Ln, n is obtained by connecting the vertices i and i′ on these two paths with one edge for i=1, 2, …, n, respectively. The cylinder Zn, n is obtained by connecting the vertices 1 and n, and the vertices 1′ and n′ with one edge on the ladder Ln, n, respectively. The Möbius strip Mn, n is obtained by connecting the the vertices 1 and n′, and the vertices 1′ and n with one edge respectively on the ladder Ln, n That is, Ln, n=Pn×P2, Zn, n=Cn×P2. In this paper, the matching polynomials of ladders, cylinder and Möbius strip are calculated by using recursive relationships and generation functions. In addition, the number of perfect matching on these graphs are also calculated.

  • 本文仅考虑有限无向的简单图.设G是有n个点的图. 若G的一个生成子图的每个分支是一个孤立点或者一条边,则称此生成子图为G的一个匹配.恰有k条边的匹配称为k-匹配.饱和了G的所有顶点的匹配称为G的完美匹配,图G的完美匹配的个数记为pm(G). 文献[1]定义了图G的匹配多项式为

    这里W=(xy),xy分别是点和边的权重,p(Gk)是G的所有k-匹配的数目,且约定p(G,0)=1.假如令y=-1,我们便得到文献[2]中定义的匹配多项式

    (1),(2)式互相确定,本文使用(2)式为图G的匹配多项式,并将μ(Gx)简记为μ(G). 匹配多项式在数学、统计物理和化学中都有很重要的应用.在统计物理领域,匹配多项式是描述一种物理系统的数学模型,首先由文献[3]引入.在理论化学领域,匹配多项式的根的绝对值之和称为该图的匹配能量,与这个图所表示的芳香烃的活性有关[4]. 匹配多项式的所有系数的绝对值之和(即所有匹配的总数)就是这个图表示的碳氢化合物的Hosoya指标,与这个化合物的沸点有关[5]. 匹配多项式是一种组合计数多项式,它与图的特征多项式、色多项式和其他多项式有许多联系[6-9].对于给定的图,计算这个图的匹配多项式是一个困难的问题,文献[10-13]计算了许多图的匹配多项式.关于Hosoya指标的研究可参见文献[14],关于匹配多项式对图的刻画的研究可参见文献[15-19].截至目前,还有许多基本图的匹配多项式仍然未知,如本文所涉及的柱面和Möbius带,这是两个较为基本的图,但其匹配多项式未知.作为对匹配多项式研究的补充,本文给出了这两个图的匹配多项式,并计算了这些图上的完美匹配的个数.

    G=(V(G),E(G))是一个简单图,V(G)是其顶点集,E(G)是其边集,其中E(G)的每一个元素是V(G)上的无序对,称为一条边.如果eE(G),以G\e表示从图G中删除边e后得到的图. 如果vV(G),以G\v表示删去点v以及与之相关联的所有边后得到的图.以PnCn分别表示n个点的路、圈.给两条n个点的路,其顶点从左向右分别标记为1,2,…,n和1′,2′,…,n′,将这两条路上的点ii′(i=1,2,…,r)分别用一条边连接,得到的图记为Lnr(见图 1).把Lnn称为梯子,简记为Ln.将图Lnr的顶点1和n,1′和n′分别用一条边连接得到的图记为ZnrZnn称为柱面,简记为Zn.将图Lnr的顶点1和n′,1′和n分别用一条边连接得到的图记为MnrMnn称为Möbius带,记为Mn(见图 2).从梯子Ln中删去点n后得到的图记为Sn(见图 3).设GH是两个点不交的图,定义图GH的乘积图为G×H,其顶点集为V(GV(H),两个点(u1v1),(u2v2)∈V(G×H)在图G×H中邻接当且仅当u1=u2v1v2在图H中邻接,或u1u2G中邻接,v1=v2.于是,梯子Lnn=Pn×P2,柱面图Znn=Cn×P2.

1.   柱面和Möbius带的匹配多项式
  • 引理1[9]   设图Gk个连通分支:G1G2,…,Gk,则

    引理2[9]   设G是一个图,uV(G),e=uvE(G),则:

    (ⅰ) $\mu(G, x)=x \mu(G \backslash u, x)-\sum\limits_{i \sim u} \mu(G \backslash\{u, i\}, x)$

    (ⅱ) $\mu(G, x)=\mu(G \backslash e, x)-\mu(G \backslash\{u, v\}, x)$.

    引理3[9]

    引理4[14]   设G是有n个点的图,则

    其中i是复数单位,i2=-1.

    定理1

       对Ln的边e=(n-1,n)、Sn的边e′=((n-1)′,n′)使用引理2,便得到(3)式的前两个式子.为了使(3)式的系数矩阵是一个方阵,我们填上第3个式子.

    令(3)式的系数矩阵为

    设矩阵A的特征多项式为

    其中$d_1=\mu\left(P_2\right)-1=x^2-2, d_2=-\mu\left(P_2\right)+2 \mu\left(P_1\right)^2-1=x^2, d_3=1$.

    μ(Ln)满足递推关系式

    初始条件为

    因为(5)式的变量为t的生成函数

    由生成函数的定义,定理1得证.

    定理2

    其中μ(L0,0)=1.

       对Lnr的边$e_r=\left(r, r^{\prime}\right), e_{r-1}=\left(r-1, (r-1)^{\prime}\right), \cdots, e_1=\left(1, 1^{\prime}\right)$依次使用引理2(ⅱ),便得到下列式子:

    将以上各式相加,得到

    定理3

    其中Ln-1,0=2Pn-1.

       对Znn的边$e_n=\left(n, n^{\prime}\right), e_{n-1}=\left(n-1, (n-1)^{\prime}\right), \cdots, e_1=\left(1, 1^{\prime}\right)$依次使用引理2(ⅱ),便得到下列式子:

    相加上面各式,定理3得证.

    定理4

    其中Ln-1,0=2Pn-1.

       对Mnn的边$e_n=\left(n, n^{\prime}\right), e_{n-1}=\left(n-1, (n-1)^{\prime}\right), \cdots, e_1=\left(1, 1^{\prime}\right)$依次使用引理2(ⅱ),便得到下列式子:

    相加上面各式,定理4得证.

    推论1   (ⅰ) $\mu\left(M_{n, n}\right)-\mu\left(Z_{n, n}\right)=\mu\left(C_{2 n}\right)-\mu\left(C_n\right)^2$

    (ⅱ)

    (ⅲ) $Z\left(M_{n, n}\right)-Z\left(Z_{n, n}\right)=Z\left(C_{2 n}\right)-Z\left(C_n\right)^2$.

       由定理3和定理4,(ⅰ)显然.

    (ⅱ)由匹配多项式的定义知

    由(ⅰ)和引理3知

    n为奇数时,$(-1)^n\left(\mu\left(C_{2 n}, 0\right)-\mu\left(C_n, 0\right)^2\right)=(-1)^n\left((-1)^n \times 2-0\right)=2$.

    n为偶数时,$(-1)^n\left(\mu\left(C_{2 n}, 0\right)-\mu\left(C_n, 0\right)^2\right)=(-1)^n\left((-1)^n \times 2-\left((-1)^{\frac{n}{2}} \times 2\right)^2\right)=-2$.

    (ⅲ)由引理4和(ⅰ)知

    推论1得证.

2.   梯子、柱面和Möbius带的完美匹配数
  • 推论2

       在定理1中令k2=0,x=0,便得该表达式的常数项为

    由于Ln的完美匹配数pm(Ln)等于多项式μ(Lnx)的常数项乘(-1)n,于是

    注1   很容易计算Ln的完美匹配数就是著名的斐波那契数,其前几项的值L1L2L3L4的完美匹配数分别为1,2,3,5,与推论2计算的值是吻合的.推论2给出了斐波那契数的另外一种表示法.

    推论3   (ⅰ) 当n为偶数时,

    (ⅱ) 当n为奇数时,

       众所周知,当n=4mn=4m+2时,路Pn的匹配多项式的常数项为1或-1;当n为奇数时,路Pn的匹配多项式的常数项均为0.令x=0,便得:

    n为偶数时,定理2中表达式的常数项为

    于是

    n为奇数时,定理2中表达式的常数项为

    推论4   (ⅰ) 当n为偶数时,

    (ⅱ) 当n为奇数时,

       众所周知,当n=4mn=4m+2时,圈Cn的匹配多项式的常数项为2或-2;当n为奇数时,圈Cn的匹配多项式的常数项均为0,令x=0,便得:

    n为偶数时,由推论3知,定理3中表达式的常数项为

    n为奇数时,定理3中表达式的常数项为

    注2容易验证图Z3Z4的完美匹配数分别为4和9,与推论4计算的值是吻合的.

    推论5   (ⅰ) 当n为偶数时,

    (ⅱ) 当n为奇数时,

       令x=0,便得:

    n为偶数时,由推论3知,定理4中表达式的常数项为

    n为奇数时,定理4中表达式的常数项为

    注3   容易验证图M3M4的完美匹配数分别为6和7,与推论5计算的值是吻合的.

Figure (3)  Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return