Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 45 Issue 4
Article Contents

HE Song, LIAN Yinyin, YANG Juxiang, et al. Research on Quality Formation of Pickled Mustard during The Process of 'Three-Time Pickling and Three-Time Pressing'[J]. Journal of Southwest University Natural Science Edition, 2023, 45(4): 219-225. doi: 10.13718/j.cnki.xdzk.2023.04.021
Citation: HE Song, LIAN Yinyin, YANG Juxiang, et al. Research on Quality Formation of Pickled Mustard during The Process of "Three-Time Pickling and Three-Time Pressing"[J]. Journal of Southwest University Natural Science Edition, 2023, 45(4): 219-225. doi: 10.13718/j.cnki.xdzk.2023.04.021

Research on Quality Formation of Pickled Mustard during The Process of "Three-Time Pickling and Three-Time Pressing"

More Information
  • Received Date: 15/11/2022
    Available Online: 20/04/2023
  • MSC: TS255.5

  • After the process of "three-time pickling and three-time pressing", the mustard has become the pickled mustard favored by consumers. In order to explore the regularity of quality formation in the process, the changes of total acids, organic acids, amino acids, nitrite, sugars, and isothiocyanates in the process of "three-time pickling and three-time pressing" of pickled mustard were systematically analyzed by HPLC, GC-MS and conventional physical and chemical analysis methods. The results showed that the total acid content significantly increased from (3.4±0.1) mg/g to (6.1±0.1) mg/g (p < 0.05). The organic acid was mainly composed of oxalic acid and acetic acid in the first-time picking. The types of organic acids were gradually enriched with the prolongation of the curing period. The lactic acid content reached to the highest (5.2±0.1) mg/g at the end of "three-time pickling and three-time pressing" process. Seventeen kinds of amino acids were detected, and the proportion of sweet and delicious amino acids increased gradually with the prolongation of the curing period. In addition, glucose, sucrose and other monosaccharides and disaccharides were not found in the first-time picking, but a small amount of glucose and sucrose appeared with the prolongation of the curing period. The content of isothiocyanates decreased gradually during the curing process, and significantly decreased to (0.41±0.02) mg/g (p < 0.05) during the three curing stages.
  • 加载中
  • [1] AYAZ F A, HAYIRLIOGLU A S, ALPAY-KARAOGLU S, et al. Phenolic Acid Contents of Kale (Brassica oleraceae) Extracts and Their Antioxidant and Antibacterial Activities[J]. Food Chemistry, 2008, 107: 19-25. doi: 10.1016/j.foodchem.2007.07.003

    CrossRef Google Scholar

    [2] WANG L I, GIOVANNUCCI E L, HUNTER D, et al. Dietary Intake of Cruciferous Vegetables, Glutathione S-Transferase (GST) Polymorphisms and Lung Cancer Risk in a Caucasian Population[J]. Cancer Causes & Control, 2004, 15(10): 977-985.

    Google Scholar

    [3] ZUKALOVÁ H, VAŠÁK J. The Role and Effects of Glucosinolates of Brassica Species-a Review[J]. Rostlinna Vyroba, 2002, 48(4): 175-180.

    Google Scholar

    [4] 曾凡坤, 王金美. 蒸馏萃取-气相色谱-质谱联用对不同腌制工艺大头菜挥发性风味物质的分析[J]. 食品科学, 2011, 32(8): 197-201

    Google Scholar

    [5] 张静, 李阿敏, 张碧莹, 等. 保藏条件对低盐方便榨菜品质及保藏特性的影响[J]. 食品与发酵工业, 2017, 43(3): 239-246.

    Google Scholar

    [6] 肖付才, 刘凯, 陈凤仪, 等. 有机酸对泡菜亚硝酸盐和生物胺的抑制作用[J]. 中国调味品, 2020, 45(10): 80-84.

    Google Scholar

    [7] 经骐源, 李婷, 曾凡坤, 等. 发酵剂对泡萝卜品质的影响[J]. 食品科学, 2021, 42(22): 171-177.

    Google Scholar

    [8] YANG Y, FAN Y, LI T, et al. Microbial Composition and Correlation between Microbiota and Quality-Related Physiochemical Characteristics in Chongqing Radish Paocai[J]. Food Chemistry, 2022, 369: 130897. doi: 10.1016/j.foodchem.2021.130897

    CrossRef Google Scholar

    [9] ZANG J, XU Y, XIA W, et al. Correlations between Microbiota Succession and Flavor Formation during Fermentation of Chinese Low-Salt Fermented Common Carp (Cyprinus carpio L. ) Inoculated with Mixed Starter Cultures[J]. Food Microbiology, 2020, 90: 103487. doi: 10.1016/j.fm.2020.103487

    CrossRef Google Scholar

    [10] YU Z, TAO Z A, HW A, et al. Correlation between the Quality and Microbial Community of Natural-Type and Artificial-Type Yongchuan Douchi[J]. LWT——Food Science and Technology, 2021, 140, 110788. doi: 10.1016/j.lwt.2020.110788

    CrossRef Google Scholar

    [11] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中亚硝酸盐与硝酸盐的测定: GB 5009.33-2016[S]. 北京: 中国标准出版社, 2017.

    Google Scholar

    [12] 王艳颖, 胡文忠, 庞坤, 等. 高效液相色谱-蒸发光散射法测定苹果中可溶性糖的含量[J]. 食品与发酵工业, 2008, 34(6): 129-131.

    Google Scholar

    [13] ZHANG F, TANG Y, REN Y, et al. Microbial Composition of Spoiled Industrial-Scale Sichuan Paocai and Characteristics of the Microorganisms Responsible for Paocai Spoilage[J]. International Journal of Food Microbiology, 2018, 275: 32-38.

    Google Scholar

    [14] 吴晓红, 高生平, 蒋彩云, 等. 榨菜发酵过程中原核微生物群落结构及其理化因子的动态演替[J]. 食品与发酵工业, 2021, 47(1): 27-34.

    Google Scholar

    [15] 柳凯, 解双瑜, 李智, 等. 盐度对紫甘蓝自然发酵过程中细菌多样性及品质的影响[J]. 中国食品学报, 2022, 22(11): 379-389.

    Google Scholar

    [16] 李慧, 张子燕. 泡菜中亚硝酸盐的研究[J]. 现代食品, 2020(20): 88-90.

    Google Scholar

    [17] 鲜双, 姜林君, 李艳兰, 等. 不同方式发酵的哈密瓜幼果泡菜理化特性和氨基酸含量分析[J]. 食品与发酵工业, 2021, 47(5): 224-230.

    Google Scholar

    [18] 刘晓英. 泡菜中有机酸对亚硝酸盐降解作用及机理的初步研究[D]. 泰安: 山东农业大学, 2013.

    Google Scholar

    [19] 张杰, 程伟, 潘天全, 等. 浓香型白酒风味成分研究现状及展望[J]. 酿酒, 2019, 46(1): 29-32.

    Google Scholar

    [20] 王泽亮, 范智义, 邓维琴, 等. 川渝地区市售成品包装榨菜与工厂半成品榨菜风味物质的解析[J]. 中国调味品, 2022, 47(6): 171-174, 187.

    Google Scholar

    [21] 袁乐梅, 肖雄峻, 边名鸿, 等. 低盐榨菜混菌强化发酵工艺研究[J]. 中国调味品, 2019, 44(9): 65-71.

    Google Scholar

    [22] 肖付才, 刘凯, 陈凤仪, 等. 有机酸对泡菜亚硝酸盐和生物胺的抑制作用[J]. 中国调味品, 2020, 45(10): 80-84.

    Google Scholar

    [23] CHEN A, LUO W, PENG Y, et al. Quality and Microbial Flora Changes of Radish Paocai during Multiple Fermentation Rounds[J]. Food Control, 2019, 106: 106733.

    Google Scholar

    [24] SUN-WATERHOUSE D, WADHWA S S. Industry-Relevant Approaches for Minimising the Bitterness of Bioactive Compounds in Functional Foods: A Review[J]. Food and Bioprocess Technology, 2013, 6(3): 607-627.

    Google Scholar

    [25] KONG Y, ZHANG L L, SUN Y, et al. Determination of the Free Amino Acid, Organic Acid, and Nucleotide in Commercial Vinegars[J]. Journal of Food Science, 2017, 82(5): 1116-1123.

    Google Scholar

    [26] 郭媛, 王丽娟, 邱婷, 等. L-丙氨酸在食品工业中的应用潜力[J]. 中国调味品, 2017, 42(7): 177-180.

    Google Scholar

    [27] XIONG T, PENG F, LIU Y Y, et al. Fermentation of Chinese Sauerkraut in Pure Culture and Binary Co-Culture with Leuconostoc mesenteroides and Lactobacillus plantarum[J]. LWT Food Science and Technology, 2014, 59(2): 713-717.

    Google Scholar

    [28] 张尧, Nyasha Makaza, 吕城枝, 等. 提取方式对十字花科蔬菜中异硫氰酸酯的影响[J]. 食品研究与开发, 2022, 43(8): 47-53.

    Google Scholar

    [29] 肖华志. 食用辛辣风味物质异硫氰酸烯丙酯(AITC)的研究[D]. 北京: 中国农业大学, 2004.

    Google Scholar

    [30] 郝卓莉. 遂宁榨菜发酵过程中细菌群落多样性和基因功能预测分析[J]. 中国酿造, 2021, 40(5): 59-64.

    Google Scholar

    [31] 刘明春. 榨菜加工过程中挥发性风味物质的形成及变化研究[D]. 重庆: 重庆大学, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  /  Tables(3)

Article Metrics

Article views(835) PDF downloads(251) Cited by(0)

Access History

Research on Quality Formation of Pickled Mustard during The Process of "Three-Time Pickling and Three-Time Pressing"

Abstract: After the process of "three-time pickling and three-time pressing", the mustard has become the pickled mustard favored by consumers. In order to explore the regularity of quality formation in the process, the changes of total acids, organic acids, amino acids, nitrite, sugars, and isothiocyanates in the process of "three-time pickling and three-time pressing" of pickled mustard were systematically analyzed by HPLC, GC-MS and conventional physical and chemical analysis methods. The results showed that the total acid content significantly increased from (3.4±0.1) mg/g to (6.1±0.1) mg/g (p < 0.05). The organic acid was mainly composed of oxalic acid and acetic acid in the first-time picking. The types of organic acids were gradually enriched with the prolongation of the curing period. The lactic acid content reached to the highest (5.2±0.1) mg/g at the end of "three-time pickling and three-time pressing" process. Seventeen kinds of amino acids were detected, and the proportion of sweet and delicious amino acids increased gradually with the prolongation of the curing period. In addition, glucose, sucrose and other monosaccharides and disaccharides were not found in the first-time picking, but a small amount of glucose and sucrose appeared with the prolongation of the curing period. The content of isothiocyanates decreased gradually during the curing process, and significantly decreased to (0.41±0.02) mg/g (p < 0.05) during the three curing stages.

  • 开放科学(资源服务)标志码(OSID):

  • 青菜头是我国西南地区种植的主要农作物之一,又称芥菜,属于十字花科. 由于其特有的香气(异硫氰酸酯类物质)和抗氧化、抗癌等多种生物活性,成为了世界上受欢迎且有价值的蔬菜[1]. 榨菜是我国传统发酵蔬菜产品,以青菜头为原料,经“三腌三榨”经典工艺制作而成[2-3]. 青菜头“三腌三榨”过程中随着时间的推移在风味、质地、颜色等方面发生变化,最终形成备受消费者青睐的“青脆鲜香”风味榨菜[2-3].

    “三腌三榨”工艺包括:第1阶段“一腌一榨”,向青菜头中加入5%左右的盐,此腌制过程主要是去除青菜头中过多的水分,同时一定的盐分可以抑制不耐盐杂菌的生长. 经过第一腌期后,将榨菜取出,去除榨出的水分,就进入了第2阶段“二腌二榨”. 将一腌过后的榨菜再添加2%~3%的盐,进行“二腌二榨”,该过程是榨菜风味形成的主要阶段. 第2次腌制结束后,同样去除多余的水分,继续补充盐分至10%以上,开始第3阶段“三腌三榨”,第3次腌制期在1-6个月范围内,主要是使榨菜风味进一步完善,同时高盐抑制微生物生长,使榨菜可以长时间贮存,以备后期生产所需[4-5].

    为了探究榨菜“三腌三榨”过程中理化品质和风味品质的形成规律,本文采用高效液相色谱(HPLC)、气相色谱串联质谱(GC-MS)等方法对榨菜腌制过程中总酸、有机酸、氨基酸、亚硝酸盐、糖类及异硫氰酸酯类物质的变化进行测定,榨菜腌制过程的研究能够为后期调控榨菜品质奠定基础.

1.   材料与方法
  • 不同腌期榨菜由重庆涪陵榨菜集团提供;17种氨基酸标准溶液、草酸、酒石酸、苹果酸、乳酸、抗坏血酸、乙酸、琥珀酸,购自上海安谱生物有限公司;氢氧化钠、磷酸二氢钠、异硫氰酸甲酯、三乙胺、三乙胺、盐酸、乙酸钠、乙酸均为分析纯,购自成都科龙化工试剂厂;正己烷、乙腈、甲醇为色谱纯,购自钛新化工有限公司.

  • LC20A型高效液相色谱仪,日本岛津公司;GCMS-QP2010气相色谱质谱联用仪,日本岛津公司;5810台式高速离心机,德国Eppendorf公司;HH-4恒温水浴锅,常州澳华仪器有限公司;C21-SN216多功能电磁炉,广东美的生活电器制造有限公司.

  • 量取100 mL蒸馏水加热煮沸,然后加入25 g榨菜样品并捣碎,将其转移至250 mL烧瓶中,继续用沸水对烧瓶进行水浴加热0.5 h,加热过程中需要摇动几次烧瓶使其受热均匀,加热结束后冷却至室温,最后将烧瓶中的物质转移至250 mL容量瓶定容,取25 mL滤液备用,并用标准碱液进行滴定检测[6-7].

  • 取一定质量榨菜按1∶1加超纯水,制备成匀浆,称取5 g匀浆,加入15 mL 80% 乙醇-水溶液,75 ℃水浴0.5 h,冷却至室温,转移至25 mL容量瓶中,超纯水定容至刻度,于9 000 r/min,离心30 min,上清液为进样液,上机前经0.22 μm针头式滤膜过滤,上机检测. 液相色谱检测条件:C18柱(250 mm×4.6 mm,5 μm),流动相A为0.01 mol/L磷酸二氢钠(磷酸定容至pH=2.8),流动相B为甲醇,流速1 mL/min(A∶B=0.97∶0.03),紫外检测波长210 nm,进样量20 μL[8-9].

  • 取适量样品,80 ℃烘干粉粹,用0.1 mol/L盐酸溶解,超声40 min,再用0.1 mol/L盐酸定容于25 mL容量瓶,滤后取2 mL上清液衍生,衍生后用0.22 μm滤膜过滤,上机备用. 液相色谱分析条件:C18柱(250 mm×4.6 mm,5 μm),流动相A为乙腈∶水(4∶1),流动相B为0.1 mol/L乙酸钠溶液-乙腈(97∶3)(乙酸调节pH=6.5),流速1 mL/min,紫外检测波长254 nm,柱温36 ℃,进样量20 μL[10].

  • 使用盐酸萘乙二胺分光光度法对亚硝酸盐进行测定,称取5 g榨菜置于250 mL具塞烧瓶中,加入12.5 mL 50 g/L饱和硼砂溶液和150 mL温水,搅拌均匀后在沸水浴中加热15 min,加热结束后冷却至室温. 依次加入5 mL 106 g/L亚铁氰化钾溶液和5 mL 220 g/L乙酸锌溶液沉淀蛋白质,然后将其定容至200 mL,放置30 min,除去上层脂肪,上清液用滤纸过滤,弃去初滤液30 mL,剩余滤液备用,然后于波长538 nm处测吸光度[11].

  • 取10 g样品,研磨后加入50 mL超纯水,于80 ℃恒温水浴锅中保温20 min,不时搅拌,使可溶性糖充分浸出,然后过滤,将滤液收集在100 mL容量瓶中,超纯水定容至刻度. 上机前经0.22 μm针头式滤膜过滤,上机检测. 液相色谱检测条件:C18(250 mm×4.6 mm,5 μm),流动相为V(乙腈)∶V(水)=75∶25,流速1 mL/min,示差检测器检测,柱温40 ℃,进样量20 μL[12].

  • 取不同发酵阶段的榨菜切碎且粒径大约为1 mm的颗粒,称取3 g置于15 mL顶空瓶中,加入5 μL 2-辛醇(内标,81.9 ng/L在水中),密封,置于75 ℃水浴45 min,样品抽取时间20 min,解析时间5 min. DB-5 MS UI色谱柱(30 m×0.25 mm×0.25 μm),压力32.0 kPa;流速1.0 mL/min;载气为He气,不分流进样;进样口温度220 ℃;将温度设定在35 ℃保持4 min,然后以10 ℃/min的速率升温至110 ℃保持6 min,再以5 ℃/min升温至150 ℃,保持2 min,最后以7 ℃/min的速率升温至230 ℃保持6 min. 当230 ℃离子源温度和150 ℃ EI源温度时用于质谱分析. 质量数扫描范围为50~550 m/z,使用计算机质谱仪分析未发现化学品的搜索结果(NSIT14数据库). 将挥发性风味化合物的使用结果和2-辛醇相关的相对面积作为内标对挥发物进行量化.

  • 实验数据采用SPSS Statistics 25软件进行统计分析,结果以平均值±标准差(SD)表示;采用Origin 2018软件作图;所有试验均重复3次.

2.   结果与分析
  • 总酸是榨菜发酵过程中重要的理化指标,不仅显著影响其品质,并且与榨菜成熟度及微生物生长密切相关[13]. 由图 1可知,测得一腌结束时榨菜总酸质量分数为(3.4±0.1) mg/g,随着腌期度增加,榨菜总酸质量分数显著上升(p<0.05). 在第3次腌制结束时,榨菜的总酸质量分数达到(6.1±0.1) mg/g. 该试验结果与吴晓红等[14]的研究结果相似. 原因可能是在发酵初期乳酸菌等发酵优势菌的丰度较低,而在发酵中后期发酵优势菌迅速增加,产酸量增多,对应的结果为总酸质量分数随着发酵时间延长不断升高[15].

  • 亚硝酸盐是衡量酱腌菜安全性的重要指标之一,摄入过多时会生成强致癌物亚硝胺,对人体健康造成极大威胁[16]. 如图 1所示,榨菜在第1次腌制期结束时,亚硝酸盐质量分数为(4.83±0.45) mg/kg. 随着腌期延长,亚硝酸盐质量分数显著下降,第2次腌期结束时,亚硝酸盐质量分数显著下降至(1.2±0.15) mg/kg(p<0.05). 在榨菜腌期(三腌)结束时,亚硝酸盐质量分数持续下降至(0.76±0.19) mg/kg,但与二腌结束时亚硝酸盐质量分数差异不显著(p>0.05). 研究表明,随着发酵的进行,乳酸菌成为优势菌群会产生亚硝酸盐降解酶,从而迅速降解亚硝酸盐,使其质量分数降低[17],这也解释了榨菜在第3次腌期结束时亚硝酸盐质量分数处于一个较低水平,但榨菜在整个腌制过程中所有阶段均符合GB2762-2017《食品安全国家标准食品中污染物限量》中亚硝酸盐在蔬菜及其制品(腌渍蔬菜)中不可超过20 mg/kg的规定. 同时从图 2可知,在榨菜腌制过程中草酸质量分数较高,有研究表明草酸等有机酸可以与亚硝酸盐反应生成NO,从而起着显著降解亚硝酸盐的作用,这可能也是导致榨菜中亚硝酸盐质量分数降低的原因之一[18].

  • 有机酸是榨菜发酵过程中重要的理化指标,与榨菜的风味和成熟度密切相关. 由图 2可知,随着发酵时间延长,榨菜中有机酸的种类逐渐丰富,乳酸、柠檬酸、酒石酸在二腌阶段出现,并在三腌阶段显著增加,而抗坏血酸、苹果酸、琥珀酸在三腌阶段出现. 乳酸是一种滋味较为柔和的酸,有一定的助香作用,可以提升榨菜的品质[19-20]. 从二腌到三腌,乳酸质量分数逐渐增加,这可能是因为在发酵中后期,乳酸菌为主要发酵菌种[21]. 研究表明,加入柠檬酸、乳酸和苹果酸均可显著增加总酸的质量分数[22]. 随着发酵时间延长,柠檬酸、乳酸、柠檬酸逐渐出现且质量分数逐渐增加,这也显示了随着发酵时间延长,总酸质量分数显著上升(p<0.05).

  • 氨基酸是榨菜中重要的风味物质,对榨菜的风味和品质有着重要影响. 榨菜在3次腌制期氨基酸质量分数如表 1所示,共检测到17种氨基酸. 氨基酸总量随着腌期进行增加而增加,到第3次腌制结束时氨基酸质量分数达到了最高值(1.87±0.06) mg/g. 参照Chen等[23]对氨基酸进行呈味分类的方法,得到2种鲜味氨基酸(谷氨酰胺和天冬氨酸),5种甜味氨基酸(苏氨酸、丝氨酸、丙氨酸、甘氨酸和脯氨酸),10种苦味氨基酸(组氨酸、精氨酸、酪氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸、苯丙氨酸、赖氨酸、色氨酸). 鲜味氨基酸在榨菜3次腌制过程中质量分数逐渐上升,其中天冬氨酸质量分数在第3次腌期结束时显著升高至(0.09±0.02) mg/g. 甜味氨基酸在榨菜3次腌制过程中质量分数同样逐渐上升,其中丙氨酸、脯氨酸在第2次腌期结束时质量分数显著上升至(0.17±0.08) mg/g和(0.27±0.17) mg/g. 由图 3可知,苦味氨基酸的质量分数相较于鲜味氨基酸和甜味氨基酸,处于较高水平,但是对于苦味的感知受到榨菜中盐的抑制,而对于甜味的感知受到榨菜中盐的促进,且苦味氨基酸的阈值较高,在榨菜中质量分数较低,因此榨菜中苦味氨基酸的呈味不明显[24-25]. 丙氨酸具有甜味,可提升榨菜鲜度,降低咸味和酸味,对维持榨菜柔和口感具有良好的作用[26].

  • 异硫氰酸酯类物质是青菜头的特征风味成分,主要呈“辛辣”味. 在榨菜腌制过程中异硫氰酸酯类物质会被微生物进行转化,导致“辛辣”味逐渐消失[28]. 在一腌过程中,异硫氰酸酯类物质主要组成为异硫氰酸烯丙酯(0.16±0.03) mg/g,3-丁烯基异硫氰酸酯(0.09±0.06) mg/g,3-(甲硫基)丙基异硫氰酸酯(0.07±0.01) mg/g,异硫氰酸苯乙酯(2.1±0.47) mg/g. 在二、三腌过程中,3-丁烯基异硫氰酸酯、异硫氰酸苯乙酯和3-(甲硫基)丙基异硫氰酸酯逐渐降低,其中异硫氰酸苯乙酯质量分数显著下降至(0.11±0.03) mg/g(p<0.05);而异硫氰酸烯丙酯在二、三腌过程中出现,在二腌时质量分数最高,为(0.75±0.19) mg/g. 在整个腌制过程中,异硫氰酸烯丙酯质量分数无显著变化(p>0.05). 对异硫氰酸酯类物质进行总体分析发现,其总量在一腌和二腌过程中变化不显著(p>0.05),在三腌过程中显著下降(p<0.05). 异硫氰酸酯类物质是青菜头中硫代葡萄糖苷在芥子苷酶作用下的降解产物,但硫代葡萄糖苷降解与环境pH值有着较大的关系,只有在pH=7时硫代葡萄糖苷的降解产物才为异硫氰酸酯类物质[29]. 一腌过程为发酵第一阶段,此时杂菌较多,榨菜发酵优势菌丰度较低,处于中性环境,硫代葡萄糖苷较多地降解为异硫氰酸酯类物质. 在发酵中后期,环境中pH值由于发酵优势菌大量繁殖而降低,且在发酵中后期环境中的含盐量较高,导致芥子苷酶活力下降甚至失活,异硫氰酸酯类物质不能产生且会被微生物转化,因此异硫氰酸酯类物质的质量分数随着腌制时间延长而降低[30-31](图 4表 2).

  • 榨菜在3次腌制时期可溶性糖质量分数如表 3所示. 一腌未检测到可溶性糖类物质,随着腌制时期延长,蔗糖、葡萄糖相继出现. 发酵初期,由于青菜头细胞中可溶性糖还没有完全溶出,溶出的少量可溶性糖还被微生物用于生长繁殖,因此一腌中没有检出可溶性糖[15]. 随着发酵不断进行,由于榨菜中含盐量不断增加,可溶性糖溶出速率也不断增大[15]. 发酵中后期,榨菜中蔗糖质量分数逐渐增加,可能是由于在发酵中后期发酵优势菌大量繁殖所致. 此外,蔗糖还会由肠膜明串珠菌代谢产生,而肠膜明串珠菌是发酵过程中的主要发酵优势菌之一[27].

3.   结论与讨论
  • 在榨菜制作过程中,通过腌制去除原料携带的大部分杂菌,让乳酸菌成为优势菌群进行乳酸发酵,形成具有独特风味的榨菜. “三腌三榨”过程对榨菜的基本理化指标进行检测,发现总酸、有机酸、氨基酸等榨菜主要风味物质均显著升高(p<0.05). 异硫氰酸酯类物质质量分数显著下降,使得青菜头在腌制后“辛辣”味消失(p<0.05). 此外,“三腌三榨”能使榨菜亚硝酸盐质量分数在国家限量标准内,该工艺赋予榨菜良好的风味和营养价值. 通过对榨菜“三腌三榨”过程中基本理化和风味指标的监测,能够进一步为榨菜风味调控和产业升级提供理论指导.

Figure (4)  Table (3) Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return