Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 2 Issue 4
Article Contents

LIU Shuaikang, LI Ting, FENG Hui, et al. Advances in Biological Control of Bacterial Wilt[J]. PLANT HEALTH AND MEDICINE, 2023, (4): 39-46. doi: 10.13718/j.cnki.zwyx.2023.04.005
Citation: LIU Shuaikang, LI Ting, FENG Hui, et al. Advances in Biological Control of Bacterial Wilt[J]. PLANT HEALTH AND MEDICINE, 2023, (4): 39-46. doi: 10.13718/j.cnki.zwyx.2023.04.005

Advances in Biological Control of Bacterial Wilt

More Information
  • Received Date: 25/03/2023
  • MSC: S432

  • Bacterial wilt caused by Ralstonia solanacearum is an important soil-borne disease of plant, which often cause a large number of death of plants or even no harvest of crop, and the harm is very serious. There is no effective solution at present. Biocontrol bacteria can be used to control plant diseases to ensure the production of non-toxic, safe and pollution-free agricultural products. In recent years, the biological control of bacterial wilt has also made some progress. In this paper, the research progress of biocontrol bacteria applied for control of bacterial wilt was summarized from four aspects:Bacillus spp., Streptomyces spp., Arbuscular mycorrhizal fungi and Phage. The principle of biological control of bacterial wilt was expounded. The existing problems and further research directions of biological control of bacterial wilt were pointed out, and the biological control of bacterial wilt was prospected.
  • 加载中
  • [1] KAWASAKI T, SATSUMA H, FUJIE M, et al. Monitoring of Phytopathogenic Ralstonia Solanacearum Cells Using Green Fluorescent Protein-Expressing Plasmid Derived from Bacteriophage phiRSS1[J]. Journal of Bioscience and Bioengineering, 2007, 104(6):451-456.

    Google Scholar

    [2] 赵灿. 探究番茄青枯病的生物防治策略[J]. 农村实用技术, 2020(6):68-69.

    Google Scholar

    [3] 黎妍妍, 王林, 孙光伟, 等. 清江流域烟区烟草青枯病流行时间动态及气象因素分析[J]. 中国烟草学报, 2017, 23(4):77-83.

    Google Scholar

    [4] 赵冏炅, 曾德武, 彭孟祥, 等. 烟草青枯病防治研究进展[J]. 湖南农业科学, 2021(5):108-110, 114.

    Google Scholar

    [5] 何洪令, 李钠钾, 孙成成, 等. 烟草青枯病的生物防治研究进展[J]. 植物医生, 2021, 34(2):4-8.

    Google Scholar

    [6] 王永生. 生物防治技术的意义与应用[J]. 农业工程技术, 2021, 41(14):49-50.

    Google Scholar

    [7] 许彦君, 刘海龙, 刘新晶, 等. 细菌对植物病害生物防治研究进展[J]. 大豆科技, 2011(5):18-22, 34.

    Google Scholar

    [8] 魏赛金, 倪国荣, 潘晓华. 水稻主要有害真菌生物防治研究进展[J]. 江西科学, 2014, 32(2):123-129.

    Google Scholar

    [9] GUO D S, YUAN C H, LUO Y Y, et al. Biocontrol of Tobacco Black Shank Disease (Phytophthora Nicotianae) by Bacillus Velezensis Ba168[J]. Pesticide Biochemistry and Physiology, 2020, 165:104523.

    Google Scholar

    [10] ARRUDA L, BENEDUZI A, MARTINS A, et al. Screening of Rhizobacteria Isolated from Maize (Zea Mays L.) in Rio Grande do Sul State (South Brazil) and Analysis of Their Potential to Improve Plant Growth[J]. Applied Soil Ecology, 2013, 63:15-22.

    Google Scholar

    [11] HAYAT R, ALI S, AMARA U, et al. Soil Beneficial Bacteria and Their Role in Plant Growth Promotion:a Review[J]. Annals of Microbiology, 2010, 60(4):579-598.

    Google Scholar

    [12] 杨海莲, 孙晓璐, 宋未. 植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J]. 植物病理学报, 2000, 30(2):106-110.

    Google Scholar

    [13] FAN B, WANG C, DING X L, et al. AmyloWiki:an Integrated Database for Bacillus Velezensis FZB42, the Model Strain for Plant Growth-Promoting Bacilli[J]. Database:the Journal of Biological Databases and Curation, 2019, 2019:baz071.

    Google Scholar

    [14] 余水, 丁海霞, 罗玉英, 等. 贝莱斯芽孢杆菌MT310生防机制初探[J]. 山地农业生物学报, 2020, 39(5):23-28.

    Google Scholar

    [15] 蔡长平, 黄军, 曾艳, 等. 一株辣椒内生拮抗细菌的筛选及初步鉴定[J]. 湖南农业科学, 2018(7):1-4.

    Google Scholar

    [16] 周向平, 滕凯, 肖启明, 等. 贝莱斯芽胞杆菌F10促生作用及对烟草青枯病的防治效果[J]. 烟草科技, 2022, 55(7):9-16.

    Google Scholar

    [17] 乔俊卿, 陈志谊, 梁雪杰, 等. 枯草芽孢杆菌Bs916防治番茄青枯病[J]. 中国生物防治学报, 2016, 32(2):229-234.

    Google Scholar

    [18] 甘金佳, 孙成荣, 尹华田, 等. 枯草芽孢杆菌可湿性粉剂防治西红柿青枯病的田间药效试验[J]. 南方园艺, 2020, 31(6):38-41.

    Google Scholar

    [19] 王丽丽, 李洋, 林乐志. 抑制番茄青枯病拮抗菌株的田间生防效果[J]. 浙江农业科学, 2018, 59(2):291-292.

    Google Scholar

    [20] EL-ABYAD M S, EL-SAYED M A, EL-SHANSHOURY A R, et al. Towards the Biological Control of Fungal and Bacterial Diseases of Tomato Using Antagonistic Streptomyces spp.[J]. Plant and Soil, 1993, 149(2):185-195.

    Google Scholar

    [21] XIAO L, NIU H J, QU T L, et al. Streptomyces sp. FX13 Inhibits Fungicide-Resistant Botrytis Cinerea in Vitro and in Vivo by Producing Oligomycin A[J]. Pesticide Biochemistry and Physiology, 2021, 175:104834.

    Google Scholar

    [22] 李威, 肖熙鸥, 李可, 等. 娄彻氏链霉菌XL-6的抑菌活性及对茄子幼苗的防病促生效应[J]. 中国生物防治学报, 2017, 33(4):531-536.

    Google Scholar

    [23] 赖宝春, 姚锦爱, 戴瑞卿, 等. 2株拮抗放线菌复合防治番茄青枯病的研究[J]. 中国生物防治学报, 2021, 37(5):1035-1040.

    Google Scholar

    [24] 陈志谊, 刘邮洲, 刘永锋, 等. 拮抗细菌菌株之间的互作关系及其对生物防治效果的影响[J]. 植物病理学报, 2005, 35(6):539-544.

    Google Scholar

    [25] EL-SHARKAWY H H A, ABBAS M S, SOLIMAN A S, et al. Synergistic Effect of Growth-Promoting Microorganisms on Bio-Control of Fusarium Oxysporum f. sp. pisi, Growth, Yield, Physiological and Anatomical Characteristics of Pea Plants[J]. Pesticide Biochemistry and Physiology, 2021, 178:104939.

    Google Scholar

    [26] SMITH S E, READ D J. Mycorrhizal Symbiosis (Second Edition)[M]. Academic Press, 1997.

    Google Scholar

    [27] 刘先良, 习向银, 申鸿, 等. 接种丛枝菌根真菌对烟草青枯病抗性的影响[J]. 烟草科技, 2014, 47(5):94-98.

    Google Scholar

    [28] SVIRCEV A, ROACH D, CASTLE A. Framing the Future with Bacteriophages in Agriculture[J]. Viruses, 2018, 10(5):218.

    Google Scholar

    [29] ABEDON S T, GARCÍA P, MULLANY P, et al. Editorial:Phage Therapy:Past, Present and Future[J]. Frontiers in Microbiology, 2017, 8:981.

    Google Scholar

    [30] JONES J B, JACKSON L E, BALOGH B, et al. Bacteriophages for Plant Disease Control[J]. Annual Review of Phytopathology, 2007, 45:245-262.

    Google Scholar

    [31] HOLTAPPELS D, FORTUNA K, LAVIGNE R, et al. The Future of Phage Biocontrol in Integrated Plant Protection for Sustainable Crop Production[J]. Current Opinion in Biotechnology, 2021, 68:60-71.

    Google Scholar

    [32] 侯玉刚. 青枯菌专性噬菌体的筛选及其防控番茄土传青枯病的效果研究[D]. 南京:南京农业大学.

    Google Scholar

    [33] TANAKA H, NEGISHI H, MAEDA H. Control of Tobacco Bacterial Wilt by an Avirulent Strain of Pseudomonas Solanacearum M4S and Its Bacteriophage[J]. Japanese Journal of Phytopathology, 1990, 56(2):243-246.

    Google Scholar

    [34] JOHNSON R, GYLES C, HUFF W, et al. Bacteriophages for Prophylaxis and Therapy in Cattle, Poultry and Pigs[J]. Animal Health Research Reviews, 2008, 9(2):201-215.

    Google Scholar

    [35] 陈志龙, 陈杰, 许建平, 等. 番茄青枯病生物防治研究进展[J]. 江苏农业科学, 2013, 41(8):131-134.

    Google Scholar

    [36] 王震, 郭爱玲, 冯莉. 青枯病生物防治的研究进展[J]. 中国生物防治, 2007, 23(S1):82-86.

    Google Scholar

    [37] 唐萍, 代飞燕, 吴毅歆, 等. 贝莱斯芽孢杆菌DJB5的生物安全性评价[J]. 南方农业学报, 2019, 50(12):2720-2727.

    Google Scholar

    [38] 黑雅娅, 杨树, 张欣, 等. 娄彻氏链霉菌ZZ-9与阿维菌素复配对南方根结线虫病的防治效果[J]. 中国瓜菜, 2022, 35(5):96-101.

    Google Scholar

    [39] 杨红武, 张胜, 符昌武, 等. 青枯雷尔氏菌噬菌体的研究与应用进展[J]. 生物灾害科学, 2022, 45(3):283-291.

    Google Scholar

    [40] 高苗. 青枯雷尔氏菌噬菌体的分离鉴定及应用研究[D]. 北京:中国农业科学院.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1603) PDF downloads(973) Cited by(0)

Access History

Advances in Biological Control of Bacterial Wilt

Abstract: Bacterial wilt caused by Ralstonia solanacearum is an important soil-borne disease of plant, which often cause a large number of death of plants or even no harvest of crop, and the harm is very serious. There is no effective solution at present. Biocontrol bacteria can be used to control plant diseases to ensure the production of non-toxic, safe and pollution-free agricultural products. In recent years, the biological control of bacterial wilt has also made some progress. In this paper, the research progress of biocontrol bacteria applied for control of bacterial wilt was summarized from four aspects:Bacillus spp., Streptomyces spp., Arbuscular mycorrhizal fungi and Phage. The principle of biological control of bacterial wilt was expounded. The existing problems and further research directions of biological control of bacterial wilt were pointed out, and the biological control of bacterial wilt was prospected.

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return