留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

多值α-g-ψ逼近压缩映象在b-矩度量空间中的最佳逼近点定理

上一篇

下一篇

令狐云龙. 多值α-g-ψ逼近压缩映象在b-矩度量空间中的最佳逼近点定理[J]. 西南大学学报(自然科学版), 2017, 39(4): 82-88. doi: 10.13718/j.cnki.xdzk.2017.04.013
引用本文: 令狐云龙. 多值α-g-ψ逼近压缩映象在b-矩度量空间中的最佳逼近点定理[J]. 西南大学学报(自然科学版), 2017, 39(4): 82-88. doi: 10.13718/j.cnki.xdzk.2017.04.013
Yun-long LINGHU. Best Proximity Point Theorems for α-g-ψ-Proximity Contractive Multimaps in b-Rectangular Metric Spaces[J]. Journal of Southwest University Natural Science Edition, 2017, 39(4): 82-88. doi: 10.13718/j.cnki.xdzk.2017.04.013
Citation: Yun-long LINGHU. Best Proximity Point Theorems for α-g-ψ-Proximity Contractive Multimaps in b-Rectangular Metric Spaces[J]. Journal of Southwest University Natural Science Edition, 2017, 39(4): 82-88. doi: 10.13718/j.cnki.xdzk.2017.04.013

多值α-g-ψ逼近压缩映象在b-矩度量空间中的最佳逼近点定理

  • 基金项目: 国家自然科学基金项目(11226228)
详细信息
    作者简介:

    令狐云龙(1963-),男,重庆大足人,副教授,主要从事非线性泛函分析的研究 .

  • 中图分类号: O177.91

Best Proximity Point Theorems for α-g-ψ-Proximity Contractive Multimaps in b-Rectangular Metric Spaces

计量
  • 文章访问数:  628
  • HTML全文浏览数:  387
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-02-02
  • 刊出日期:  2017-04-20

多值α-g-ψ逼近压缩映象在b-矩度量空间中的最佳逼近点定理

    作者简介: 令狐云龙(1963-),男,重庆大足人,副教授,主要从事非线性泛函分析的研究
  • 重庆广播电视大学 经贸学院 财经系,重庆 402160
基金项目:  国家自然科学基金项目(11226228)

摘要: b-矩度量空间中引进了多值α-g-ψ逼近压缩映象,并证明了该映象在b-矩度量空间中最佳逼近点的存在性.该结果推广和改进了近期的相关结果.

English Abstract

  • 2012年,Samet等介绍了α-ψ压缩映象,并证明了该映象在完备度量空间中的不动点定理.随后,文献[1-3]研究了广义的单值和多值α-ψ压缩映象,并得到了一些不动点定理. 2013年,文献[4]定义了α-ψ逼近压缩映象,并证明了一些最佳逼近点定理.文献[5-6]介绍了多值α-ψ逼近压缩映象,并证明了该映象在某些度量空间中的最佳逼近点定理.

    度量空间已在许多研究中被推广. 1906年,文献[7]给出了度量空间的定义后,文献[8]提到了b-度量空间的定义,并证明了该空间的最佳逼近点定理. 2000年,文献[9]用四角不等式代替三角不等式,定义了广义(矩)度量空间. 2015年,文献[10-11]给出了b-矩度量空间的定义,并证明了该空间的一些公共不动点定理.

    本文将文献[5]中的多值α-ψ逼近压缩映象推广为多值α-g-ψ逼近压缩映象,并引入到文献[10]的b-矩度量空间中,证明了该映象在此空间中的最佳逼近点的存在性.

  • 定义1[10]   设X是一非空集合,s≥1为常实数,映射dX×X→[0,∞),若对于任意的xyX,不同的uvX\{xy},满足:

    (ⅰ) d(xy)=0当且仅当x=y

    (ⅲ) d(yx)=d(xy);

    (ⅴ) d(xy)≤s[d(xu)+d(uv)+d(vy)].

    则称dXb-矩度量,称(Xd)是带有常数sb-矩度量空间.

    设(Xd)是度量空间,ABX.本文记:

    dist(AB)=inf{d(ab):aAbB}

    D(xB)=inf{d(xb):bB}

    A0={aA:对于某个bBd(ab)=dist(AB)}

    B0={bB:对于某个aAd(ab)=dist(AB)}

    2X\X的所有非空子集,CL(X)为X的所有非空闭子集,K(X)为X的所有非空紧子集.对于任意的ABCL(X),令

    映象H称为由d诱导的广义Hausdorff度量[5].

    定义2[5]  设多值映象TA→2B\,若存在x*A0,使得D(x*Tx*)=dist(AB),则称x*T的最佳逼近点.显然,当A=B时,最佳逼近点即为T的不动点[3].

    定义3   本文用Ψ表示所有满足以下条件的映射ψ:[0,∞)→[0,∞)的集合:

    (a) ψ单调非减;

    (b)对于任意的t>0和某常数s>1,$\sum\limits_{n = 1}^\infty {{s^n}} {\psi ^n}\left( t \right) $<∞.

    定义4[5]  设(AB)是度量空间(Xd)的一对非空子集,且A0.对于任意的x1x2Ay1y2B

    可推出

    d(x1x2)≤d(y1y2)

    则称(AB)具有弱P-性质.

    定义5  设AB是度量空间(Xd)的非空子集,非自映象TA→2B\∅,自映象gAAαA×A→[0,∞),对于x1x2u1u2A以及y1T(gx1),y2T(gx2),

    可推出

    α(gu1gu2)≥1

    则称映象Tα-g逼近相容的.

    定义6   设AB是度量空间(Xd)的非空子集,非自映象TACL(B),自映象gAAαA×A→[0,∞).若对于任意的xyA,有

    α(gxgy)H(TgxTgy)≤ψ(d(gxgy))

    则称映象Tα-g-ψ逼近压缩的.

    定义7[5]  设{xn}⊆A,若对于任意的nα(xnxn+1)≥1且吗$\mathop {\lim }\limits_{n \to \infty } {x_n} $=x,存在子序列{xnk} ⊆{xn},使得对于任意的kα(xnkx)≥1成立,则称A具有(C)性质.

    引理1[12]  设(Xd)是度量空间,BCL(X),那么对于xXD(xB)>0,存在恰当的q>1以及bB,使得

    d(xb)<qD(xB)

  • 定理1  设AB是完备b-矩度量空间(Xd)的非空闭子集,αA×A→[0,∞),ψΨ是严格递增的.非自映象TACL(B)和自映象gAA,满足以下条件:

    (ⅰ)T(A0)⊂B0A0g(A),(AB)具有弱P-性质;

    (ⅱ)映象Tα-g逼近相容的;

    (ⅲ)存在x0x1x2A0y1T(gx0),y2T(gx1),使得:

    (ⅳ)映象T是连续α-g-ψ逼近压缩的;

    (ⅴ)对于常数q′,q″>1,BCL(X)以及xyXD(xB)>0,D(yB)>0,存在bB,使得:

    d(xb)<qD(xB)     d(yb)<qD(xB)

    则存在x*A0,使得D(gx*Tgx*)=dist(AB).

      首先,由条件(ⅲ),可知存在x0x1A0y1T(gx0),使得

    假设y1$\notin$T(gx1),否则x1即为最佳逼近点.因为T是α-g-ψ逼近压缩的,所以

    对于y2T(gx1),由引理1,存在某个q>1,使得

    由(2) 和(3) 式,可得

    其次,由条件(ⅲ),可知存在x2A0,使得

    由(1),(5) 和(4) 式,以及(AB)具有弱P-性质,可得

    由于ψΨ是严格递增的,所以

    ψ(d(gx1gx2))<ψ((d(gx0gx1)))

    由条件(ⅲ),可得

    重复上述步骤.一方面,假设y1y2$\notin$T(gx2),由Tα-g-ψ逼近压缩的,所以

    成立.对于y1y2$\notin$T(gx2)以及q1q>1,由条件(ⅴ),存在y3T(gx2)和q1,使得:

    由(9),(10) 和(11) 式,可得

    另一方面,因为y3T(gx2)⊆B0A0g(A),所以存在x3x2gx3A0,使得

    由(1),(8),(13) 和(12) 式,以及(AB)具有弱P-性质,可得:

    ψ是严格递增的,可得

    ψ(d(gx2gx3))≤ψ2((d(x0gx1)))

    ψ(d(gx1gx3))≤ψ(qψ(d(x0gx2)))

    因此,记:

    由(1),(8) 和(13) 式,以及Tα-g逼近相容的,可得

    依次重复下去,可得序列{gxn}⊆A0和{yn}⊆B0,其中ynT(gxn-1),使得:

    成立.因为yn+2T(gxn+1)⊆B0A0g(A),所以存在xn+2xn+1gxn+2A0,使得

    由(17),(19) 和(18) 式,以及(AB)具有弱P-性质,可得:

    下一步,证明序列{gxn}⊆A0和{yn}⊆B0为柯西列.对于d(ynyn+p),分为p=2m+1,p=2m两种情况证明

    p=2m+1时,由b-矩度量空间的定义以及(18) 式,有

    p=2m时,可得

    ψΨ $ \sum\limits_{n = 1}^\infty {{s^n}} {\psi ^n}\left( t \right)$<∞,可得

    因此,由(21),(22) 和(23) 式可得,在p=2m+1,p=2m两种情况下,均有$\mathop {\lim }\limits_{n \to \infty } $ d(ynyn+p)=0成立.

    综上所述,{yn}⊆B0为柯西列.由(20) 式,易知{gxn}⊆A0也是柯西列.因为AB是完备b-矩度量空间(Xd)的闭子集,所以存在x′∈Ay*B,使得:

    在(19) 式中,令n→∞,可得

    d(y*x′)=dist(AB)

    所以x′∈A0,再由A0g(A),所以存在x*A,使得gx*=x′.这说明存在xx*Ay*B,使得:

    d(y*x′)=d(y*gx*)=dist(AB)

    由条件(ⅵ)中T是连续的和ynT(gxn-1),可得y*T(gx*).故

    dist(AB)≤D(gx*T(gx*))≤d(gx*y*)=dist(AB)

    所以

    D(gx*T(gx*))=dist(AB)

    即映象T存在最佳逼近点.

    定理2  设AB是完备b-矩度量空间(Xd)的非空闭子集,αA×A→[0,∞),ψΨ是严格递增的.非自映象TACL(B)和自映象gAA,满足以下条件:

    (ⅰ) T(A0)⊂B0A0g(A),(AB)具有弱P-性质;

    (ⅱ)映象Tα-g逼近相容的;

    (ⅲ)存在x0x1x2A0y1T(gx0),y2T(gx1),使得

    (ⅵ) A具有(C)性质且映象Tα-g-ψ逼近压缩的;

    (ⅴ)对于常数q′,q″>1,BCL(X)以及xyXD(xB)>0,D(yB)>0,存在bB,使得:

    d(xb)<qD(xB)     d(yb)<qD(xB)

    则存在x*A0,使得

    D(gx*Tgx*)=dist(AB)

      同定理1,可证得存在x′,x*Ay*B,使得:

    d(y*x′)=d(y*gx*)=dist(AB)

    由条件(ⅳ)中的性质(C),存在子列{gxnk}{gxn},使得对于任意的kα(gxnkgx*)≥1成立.由于Tα-g-ψ逼近压缩的,则对任意的k,有

    在(24) 式中,令n→∞,可得

    由度量d的连续性,可得

    因为

    ynk+1T(gxnk)

    且:

    所以y*Tgx*,故

    dist(AB)≤D(gx*T(gx*))≤d(gx*y*)=dist(AB)

    所以

    D(gx*T(gx*))=dist(AB)

    即映象T存在最佳逼近点.

    推论1  设AB是完备b-矩度量空间(Xd)的非空闭子集,αA×A→[0,∞),ψΨ是严格递增的.非自映象TAB和自映象gAA,满足以下条件:

    (ⅰ)T(A0)⊂B0A0g(A),(AB)具有弱P-性质;

    (ⅱ)映象Tα-g逼近相容的;

    (ⅲ)存在x0x1x2A0y1=T(gx0),y2=T(gx1),使得:

    (ⅳ)映象T是连续α-g-ψ逼近压缩的.

    则存在x*A0,使得

    d(gx*Tgx*)=dist(AB)

    推论2  设AB是完备b-矩度量空间(Xd)的非空闭子集,αA×A→[0,∞),ψΨ是严格递增的.非自映象TAB和自映象gAA,满足以下条件:

    (ⅰ)T(A0)⊂B0A0g(A),(AB)具有弱P-性质;

    (ⅱ)映象Tα-g逼近相容的;

    (ⅲ)存在x0x1x2A0y1=T(gx0),y2=T(gx1),使得:

    (ⅳ)A具有(C)性质且映象Tα-g-ψ逼近压缩的.则存在x*A0,使得

    d(gx*Tgx*)=dist(AB)

参考文献 (12)

目录

/

返回文章
返回