-
核盘菌[Sclerotinia sclerotiorum (Lib.) de Bary]是一种世界性分布的重要植物病原真菌,寄主范围十分广泛,能侵染75科278属450多种植物[1],由它引起的作物菌核病每年都造成巨大的经济损失[2-3].由于缺乏高抗的种植品种,到目前为止对菌核病的防治仍以化学防治为主[4-7].长期使用化学农药已导致田间核盘菌菌株出现严重的抗药性,开发新的防治方法迫在眉睫.
核盘菌能在寄主上产生坚硬、黑色的菌核,菌核以子实体形式萌发并释放的子囊孢子是作物菌核病的重要初侵染来源[2].为有效抵抗外界不良环境,菌核中的细胞壁外围绕着较厚的碳水化合物层.菌核萌发过程中需要分泌多种多糖水解酶来降解细胞壁,使得子囊柄原基穿透菌核,但到目前为止在其中起关键性作用的水解酶及其功能仍不清楚.研究表明菌核加厚的细胞壁主要由β-葡聚糖、几丁质以及其他多种未知多糖共同组成[8-9].几丁质是由N-乙酰-D-氨基葡萄糖以β-1,4糖苷键连接而成的长链多聚物[10].几丁质酶可将几丁质水解为几丁寡糖和N-乙酰-D-氨基葡萄糖单体[11],在动物、植物、微生物中均有分布[12-19].研究核盘菌几丁质酶的功能将为揭示核盘菌菌核的子实体萌发机制提供线索,也为开发新的安全的菌核病防治措施奠定基础.
自酿酒酵母(Saccharomyces cerevisiae)中的几丁质酶基因CTS1和CTS2被克隆之后[20-21],随着越来越多的丝状真菌基因组测序完成,许多真菌几丁质酶基因家族已被鉴定并进行了分析[22-23].丝状真菌基因组中一般含有10~25个几丁质酶,且都属于糖基水解酶18家族[24].韩艺娟等[25]对稻瘟病菌(Magnaporthe oryzae)假定几丁质酶家族基因表达进行分析,指出几丁质酶家族蛋白可能参与稻瘟病菌的生长发育、形态建成和致病过程.部分几丁质酶基因功能已经通过基因敲除等方法进行了深入研究[26]. Takaya等[27]破坏构巢曲霉(Aspergillus nidulans)中几丁质酶基因chiA,发现菌丝生长和分生孢子形态没有发生变化,但是分生孢子的萌发率和菌丝的生长速率明显降低. Yamazaki等[28]敲除构巢曲霉几丁质酶基因chiB,发现该基因缺失对菌丝的生长速率没有影响,却降低了细胞内外几丁质酶活性影响了菌丝的自溶.李培[29]通过RNAi稻瘟病菌几丁质酶基因的表达,发现菌丝生长和孢子分化出现异常. Dünkler等[30]敲除棉病囊霉(Ashbya gossypii)中几丁质酶基因AgCts2后,发现该基因缺失不会影响菌丝的生长及形态建成,但会形成异常的子囊孢子.这些研究表明几丁质酶在丝状真菌的生长发育过程中起着重要作用.
迄今为止,对于核盘菌菌核子实体萌发过程中起关键性作用的几丁质酶及其功能仍不清楚.本研究拟通过生物信息学方法深入分析核盘菌几丁质酶基因家族的特性,并利用实时荧光RT-PCR方法对其在菌核子实体萌发过程中的表达模式进行探讨,研究结果将为深入揭示几丁质酶基因在核盘菌生长发育中的作用奠定基础,也为菌核病的安全防治机制提供线索.
Characterization and Expression Analysis of Chitinase Family Genes in Sclerotinia sclerotiorum
-
摘要: 核盘菌菌核以子实体形式萌发是作物菌核病病害循环中关键性的一环,研究菌核子实体萌发分子机理将为菌核病的安全控制提供线索.该研究通过生物信息学方法对核盘菌几丁质酶基因家族进行分析,并利用实时荧光RT-PCR对其在菌核子实体萌发阶段的表达进行探讨.生物信息学分析表明核盘菌中共有12个基因编码假定的几丁质酶,它们均具有GH18结构域,部分蛋白还具有几丁质结合结构域和纤维素结构域;除SS1G_11212外其余蛋白均为亲水性蛋白;亚细胞定位预测表明其中10个假定几丁质酶位于胞外,其余2个分别位于细胞核和细胞质中.通过构建系统发育树分析发现假定几丁质酶可以分为2大类,其中3个与酵母几丁质酶CTS1归为一类,其余9个与CTS2归为另一类.除SS1G_00773外,其余11个几丁质酶基因在核盘菌菌核子实体萌发过程中表达量均有变化,推测几丁质酶家族蛋白可能参与核盘菌菌核子实体萌发过程.Abstract: The carpogenic germination of sclerotia for Sclerotinia sclerotiorum is a key step of crop sclerotiniose infection cycle. Studying the molecular mechanism involved in the carpogenic germination of scleortia will provide clues to control the sclerotiniose safely. In this study, chitinase family proteins of S. sclerotiorum were analyzed with the bioinformation approach, and the expression levels of chitinase genes during the carpogenic germination of sclerotia were determined with RT-PCR method. Bioinformatics analysis showed that 12 genes were predicted to encode chitinase in S. sclerotiorum. All of them had GH18 domains and some also had a chitin-binding domain and a cellulose-binding domain. All the chitinases were hydrophilic except SS1G_11212. Ten chitinases were predicted to be located outside the cell, and the others were located in the nucleus cytoplasm. Phylogenetic tree analysis showed that the 12 chitinases could be divided into two categories, of which 3 with yeast chitinase CTS1 were clustered together and the rest with CTS2 were clustered together. The expression level of the 11 chitinase genes changed during the carpogenic germination of sclerotia, except SS1G_00773, suggesting that chitinase family proteins are involved in the carpogenic germination of sclerotia for S. sclerotiorum.
-
Key words:
- Sclerotinia sclerotiorum /
- carpogenic germination of sclerotia /
- chitinase /
- gene expression .
-
表 1 RT-PCR所用引物
基因编号 引物序列(5′→3′) SS1G_11212 ACCGTATCCCTCAACCCTAATG ATTGATCGCATCGAGAAATCC SS1G_00677 TTTGATACCACAGCCGTCCC CGAACTAAGCCAGCCCTCTAC SS1G_03420 CACTGTCGCTCTTCGTCTGA GGTATTCGGGTCTCGTGCT SS1G_05897 ATGCAAATGCCCGTTGATG CCGACTTTCCGAAATGGTCT SS1G_08020 CGCTCATCAAGCAAACCTATC AGAAGCCCATGTTCCCTGTC SS1G_08695 CATCATTCCCATCGCTTTCTT CGGCAGTAGTGGCTTCATCAG SS1G_11304 GGTGGCTGGACCTATTCATCT CCGTGCTTCATCGGTGTTT SS1G_11700 CTTGAAGGCTATTCGCTCTGC GGTGTTATCCCAGGACCCAGA SS1G_00773 ACGCTGATTTGATGAGATTGC TTTCCTCCAAGTTTCTTCCCT SS1G_05454 AAATGACGATGGGTTTGGGT TCAGCGTGTCGCATGTATGA SS1G_12510 GCAGCAAACACTGGTGGACA CTTGGAAGGGAGAAATGAGCC SS1G_13155 GCTGAGGGAGTTTCTGTTTCG TAGATTGTCTCGGTGGTTACGG Beta-tubulin GTGAGGCTGAGGGCTGTGA CCTTTGGCGATGGGACG 表 2 核盘菌假定几丁质酶家族蛋白性质分析
基因编号 编码蛋白 相对分子质量 PI 信号肽 信号肽长度 蛋白定位 结构域 SS1G_11212 ChitinaseⅡ 6.9×104 4.97 无 - 胞外 Glyco_18,CBM SS1G_00677 ChitinaseⅡ 5.2×104 4.90 有 19 分泌到胞外 Glyco_18,ChtBD SS1G_03420 ChitinaseⅡ 3.5×104 4.80 有 15 分泌到胞外 Glyco_18 SS1G_05897 ChitinaseⅡ 3.4×104 6.09 无 - 胞外 Glyco_18 SS1G_08020 ChitinaseⅡ 7.5×104 8.29 无 - 胞外 Glyco_18 SS1G_08695 Chitinase Ⅲ 4.4×104 5.70 有 22 分泌到胞外 Glyco_18,CBM SS1G_11304 ChitinaseⅡ 4.4×104 4.94 无 - 胞外 Glyco_18 SS1G_11700 ChitinaseⅡ 4.8×104 6.49 有 23 分泌到胞外 Glyco_18 SS1G_00773 ChitinaseⅡ 1.9×105 4.79 有 18 分泌到胞外 Glyco_18,ChtBD SS1G_05454 ChitinaseⅡ 1.9×105 4.95 有 19 分泌到胞外 Glyco_18,ChtBD SS1G_12510 ChitinaseⅡ 1.2×105 5.95 无 - 胞质 Glyco_18,ChtBD SS1G_13155 ChitinaseⅡ 1.2×105 4.49 无 - 胞核 Glyco_18 -
[1] BOLAND G J, HALL R. Index of Plant Hosts of Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology, 1994, 16(2):93-108. doi: 10.1080/07060669409500766 [2] doi: http://d.old.wanfangdata.com.cn/NSTLQK/10.1111-j.1364-3703.2005.00316.x/ BOLTON M D, THOMMA B P, NELSON B D. Sclerotinia sclerotiorum (Lib.) de Bary:Biology and Molecular Traits of a Cosmopolitan Pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16. [3] 杨新美.油菜菌核病(Sclerotinia sclerotiorum)在我国的寄主范围及生态特性的调查研究[J].植物病理学报, 1959, 5(2):111-121. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004083817 [4] CLARKSON J P, STAVELEY J, PHELPS K, et al. Ascospore Release and Survival in Sclerotinia sclerotiorum[J]. Mycological Research, 2003, 107(2):213-222. doi: 10.1017/S0953756203007159 [5] SCHWARTZ H F, STEADMAN J R. Factors Affecting Sclerotium Populations of, and Apothecium Production by Sclerotinia sclerotiorum[J]. Phytopathology, 1978, 68(3):383-388. doi: 10.1094/Phyto-68-383 [6] ABAWI G S, GROGAN R G. Epidemiology of Diseases Caused by Sclerotinia Species[J]. Phytopathology, 1979, 69(8):899-903. doi: 10.1094/Phyto-69-899 [7] STEADMAN J R. Control of Plant Diseases Caused by Sclerotinia Species[J]. Phytopathology, 1979, 69(8):904-907. doi: 10.1094/Phyto-69-904 [8] doi: http://link.springer.com/article/10.1007/BF01403384 YOUNG N, ASHFORD A E. Changes During Development in the Permeability of Sclerotia of Sclerotinia Minor to an Apoplastic Tracer[J].Protoplasma, 1992, 167(3/4):205-214. [9] WILLETTS HJ, BULLOCK S. Developmental Biology of Sclerotia[J]. Mycological Research, 1992, 96(10):801-816. doi: 10.1016/S0953-7562(09)81027-7 [10] WERR T C, SARR L W, CHEN M L. An Antifungal Chitinase Produced by Bacillus subtilis Using Chitin Waste as a Carbon Source[J]. World Journal of Microbiol and Biotechnology, 2010, 26(5):945-950. doi: 10.1007/s11274-009-0244-7 [11] 胡燕梅, 杨龙, 李国庆.重寄生真菌盾壳霉产生几丁质酶的条件优化[J].中国生物防治学报, 2010, 26(2):167-173. doi: http://d.old.wanfangdata.com.cn/Periodical/zgswfz201002010 [12] 胡仕凤, 高必达, 陈捷.木霉几丁质酶及其基因的研究进展[J].中国生物防治学报, 2008, 24(4):369-375. doi: 10.3321/j.issn:1005-9261.2008.04.015 [13] 汤伟, 夏伟, 李雅华, 等.棘孢木霉几丁质酶基因的克隆与生物信息学分析[J].中国生物化学与分子生物学报, 2012, 28(4):385-392. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200564748 [14] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cc03d7edecbce912d71bbfa26bf1d42 SEIDL V, HUEMER B, SEIBOTH B, et al. A Complete Survey of Trichoderma Chitinases Reveals Three Distinct Subgroups of Family 18 Chitinases[J]. FEBS Journal, 2010, 272(22):5923-5939. [15] 林毅, 彭锟, 关雄.苏云金杆菌entomocidus亚种几丁质酶基因的克隆与生物信息学分析[J].激光生物学报, 2006, 15(6):598-601. doi: 10.3969/j.issn.1007-7146.2006.06.010 [16] 高颂, 刘立会, 刘仕平, 等.家蚕GH18家族几丁质酶的系统进化和BmChi的时期表达分析[J].蚕业科学, 2012, 38(3):418-423. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201202058338 [17] 范晓军, 宋志芳, 仙笑笑, 等.金纹细蛾几丁质酶基因生物信息学分析[J].基因组学与应用生物学, 2013, 32(1):91-96. doi: http://d.old.wanfangdata.com.cn/Periodical/jyzxyyyswx201301016 [18] 李大琪, 杜建中, 张建琴, 等.东亚飞蝗几丁质酶家族基因的表达特性与功能研究[J].中国农业科学, 2011, 44(3):485-492. doi: 10.3864/j.ssn.0578-1752.2011.03.007 [19] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ycxb200702006 XU F H, FAN C M, HE Y Q. Chitinases in Oryza sativa ssp. Japonica and Arabidopsis thaliana[J]. Acta Genetica Sinica, 2007, 34(2):138-150. [20] NICOL S. Life After Death for Empth Shells:Crustacean Fisheries Create a Mountain of Waste Shells, Made of a Strong Natural Polymer, Chitin. Now Chemists Are Helping to Put This Waste to Some Surprising Uses[J]. New Scientist, 1991, 129(1):46-48. [21] doi: http://www.mendeley.com/catalog/chitinase-required-cell-separation-during-growth-saccharomyces-cerevisiae/ KURANDA M J, ROBBINS P W. Chitinase is Required for Cell Separation During Growth of Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1991, 266(29):19758-19767. [22] LI D C. Review of Fungal Chitinases[J]. Mycopathologia, 2006, 161(6):345-360. doi: 10.1007/s11046-006-0024-y [23] SEIDL V. Chitinases of Filamentous Fungi:a Large Group of Diverse Proteins with Multiple Physiological Functions[J]. Fungal Biology Reviews, 2008, 22(1):36-42. doi: 10.1016/j.fbr.2008.03.002 [24] YANAI K, TAKAYA N, KOJIMA N, et al. Purification of Two Chitinases from Rhizopus oligosporus and Isolation and Sequencing of the Encoding Genes[J]. Journal of Bacteriology, 1992, 174(22):7398-7406. doi: 10.1128/jb.174.22.7398-7406.1992 [25] 韩艺娟, 林成增, 王琴秋, 等.稻瘟病菌假定几丁质酶家族基因的表达特点[J].热带作物学报, 2013, 34(8):1544-1551. doi: 10.3969/j.issn.1000-2561.2013.08.025 [26] RAMOT O, VITERBO A, FRIESEM D, et al. Regulation of Two Homodimer Hexosaminidases in Themycoparasitic Fungus Trichoderma asperellum by Glucosamine[J]. Current Genetics, 2004, 45(4):205-213. [27] doi: https://www.mendeley.com/catalogue/cloning-characterization-chitinaseencoding-gene-chia-aspergillus-nidulans-disruption-decreases-germi/ TAKAYA N, YAMAZAKI D, HORIUCHI H, et al. Cloning and Characterization of a Chitinase-Encoding Gene (chiA) from Aspergillus Nidulans, Disruption of Which Decreases Germination Frequency and Hyphal Growth[J]. Journal of the Agricultural Chemical Society of Japan, 1998, 62(1):60-65. [28] doi: http://link.springer.com/article/10.1007/s00294-006-0109-7 YAMAZAKI H, YAMAZAKI D, TAKAYA N, et al. A Chitinase Gene, chiB, Involved in the Autolytic Process of Aspergillus nidulans[J]. Current Genetics, 2007, 51(2):89-98. [29] 李培.通过RNA干扰方法研究稻瘟病菌几丁质酶家族基因功能[D].福州: 福建农林大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10389-1014322936.htm [30] DÜNKLER A, JORDE S, WENDLAND J. An Ashbya Gossypii cts2 Mutant Deficient in a Sporulation-Specific Chitinase Can be Complemented by Candida Albicans CHT4. Microbiological Research[J]. 2008, 163(6): 701-710. https://www.sciencedirect.com/science/article/pii/S0944501308000542 [31] LIMÓN M C, MARGOLLES-CLARK E, BENÍTEZ T, et al. Addition of Substrate-Binding Domains Increases Substrate-Binding Capacity and Specific Activity of a Chitinase from Trichoderma harzianum[J]. Fems Microbiology Letters, 2001, 198(1):57-63. doi: 10.1111/fml.2001.198.issue-1 [32] doi: http://link.springer.com/article/10.1007/s002940050384 KING L, BUTLER G. Ace2p, a Regulator of CTS1(Chitinase) Expression, Affects Pseudohyphal Production in Saccharomyces cerevisiae[J]. Current Genetics, 1998, 34(3):183-191. [33] doi: https://www.sciencedirect.com/science/article/pii/0378111995006540 PISHKO E J, KIRKLAND T N, COLE G T. Isolation and Characterization of Two Chitinase-Encoding Genes (ctsl, cts2) from the Fungus Coccidioides immitis[J]. Gene, 1995, 167(1/2):173-177.