留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

b-度量空间中广义c1-距离下扩张映射的新不动点定理

上一篇

下一篇

张瑜, 薛西锋. 锥b-度量空间中广义c1-距离下扩张映射的新不动点定理[J]. 西南大学学报(自然科学版), 2020, 42(6): 54-59. doi: 10.13718/j.cnki.xdzk.2020.06.007
引用本文: 张瑜, 薛西锋. 锥b-度量空间中广义c1-距离下扩张映射的新不动点定理[J]. 西南大学学报(自然科学版), 2020, 42(6): 54-59. doi: 10.13718/j.cnki.xdzk.2020.06.007
Yu ZHANG, Xi-feng XUE. Some New Fixed Point Theorems Under Generalized c1-Distance of Expanding Mappings in Cone b-Metric Spaces[J]. Journal of Southwest University Natural Science Edition, 2020, 42(6): 54-59. doi: 10.13718/j.cnki.xdzk.2020.06.007
Citation: Yu ZHANG, Xi-feng XUE. Some New Fixed Point Theorems Under Generalized c1-Distance of Expanding Mappings in Cone b-Metric Spaces[J]. Journal of Southwest University Natural Science Edition, 2020, 42(6): 54-59. doi: 10.13718/j.cnki.xdzk.2020.06.007

b-度量空间中广义c1-距离下扩张映射的新不动点定理

  • 基金项目: 陕西省自然科学基金项目(202030009)
详细信息
    作者简介:

    张瑜(1994-), 女, 硕士研究生, 主要从事非线性泛函分析的研究 .

    通讯作者: 薛西锋, 教授
  • 中图分类号: O177.91

Some New Fixed Point Theorems Under Generalized c1-Distance of Expanding Mappings in Cone b-Metric Spaces

计量
  • 文章访问数:  2407
  • HTML全文浏览数:  2407
  • PDF下载数:  352
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-18
  • 刊出日期:  2020-06-20

b-度量空间中广义c1-距离下扩张映射的新不动点定理

    通讯作者: 薛西锋, 教授
    作者简介: 张瑜(1994-), 女, 硕士研究生, 主要从事非线性泛函分析的研究
  • 西北大学 数学学院, 西安 710127
基金项目:  陕西省自然科学基金项目(202030009)

摘要: 在完备的锥b-度量空间中,利用迭代法讨论了广义c1-距离下扩张映射的不动点存在性问题.对于满足不同条件的扩张映射,在分别不要求锥的正规性及映射的连续性的条件下,得到了扩张映射的不动点定理,并通过缩减扩张映射的系数,得到了几个推论.所得结果改进和推广了已有的一些重要结论.

English Abstract

  • 非线性算子的不动点问题是非线性泛函分析中的重要研究方向,而且不动点理论在非线性积分方程和微分方程中也有广泛的应用.文献[1]通过用Banach空间代替实数空间,推广了度量空间,引入了锥度量空间的概念.此后,越来越多的学者在此空间中研究单个自映射的不动点和多个自映射的公共不动点问题,得到了很多不动点定理[2-5].文献[6-8]证明了赋值巴拿赫代数的锥度量空间中的不动点定理,使得不动点问题的研究得到了进一步的发展.

    随后,文献[9]推广了锥度量空间和b-度量空间,引入了锥b-度量空间的概念.很多学者开始在该空间中研究不动点的存在性及唯一性问题.文献[10-11]证明了锥b-度量空间中的不动点定理,文献[12]研究了具有Banach代数的锥b-度量空间中的各种不动点定理.关于广义度量空间中的更多不动点定理可参看文献[13-16].本文在完备的锥b-度量空间中,通过去除锥的正规性及映射的连续性,得到了扩张映射的几个新不动点定理.

  • 定义1[1] 设E是实Banach空间,θE中的零元,PE的非空凸闭集,若满足:

    (a) {θe}⊂P;

    (b) αP+βPPαβ≥0;

    (c) P2=P·PP

    (d) P∩{-P}={θ}.

    则称PE中的锥.对于锥PE,定义半序≤如下:xy当且仅当y-xPxy表示xyxy;而xy表示y-x∈int P,其中int P表示P的内部.如果存在常数K>0,使得θxy时,有║x║≤Ky║成立,则称P为正规锥.称满足║x║≤Ky║的最小常数KP的正规常数.若int P≠Ø,则称P为体锥.

    定义2[9] 设X是非空集合,E是实Banach空间,s≥1为给定的实数.若映射d:X×XE满足:

    (a) 对任意的xyXd(xy)≥θ,且d(xy)=θ当且仅当x=y

    (b) 任意的xyXd(xy)=d(yx);

    (c) 任意的xyzXd(xy)≤s(d(xz)+d(zy)).

    则称dX上的锥b-度量,称(Xd)为锥b-度量空间.

    定义3[9] 设(Xd)是锥b-度量空间,{xn}为X中的序列,xX.则:

    (a) 若对任意θc,存在正整数n0,使得d(xnx)≪c对任意nn0成立,则称{xn}收敛于x$\mathop {\lim }\limits_{n \to \infty } {x_n} = x$xnx(n→∞);

    (b) 若对任意θc,存在正整数n0,使得d(xnxm)≪c对任意nmn0成立,则称{xn}为Cauchy列;

    (c)若X中任意Cauchy列都是收敛序列,则称X是完备的锥b-度量空间.

    定义4[3] 设(Xd)是锥度量空间,若映射q:X×XE满足下列条件:

    (a) 对任意的xyXq(xy)≥θ

    (b) 对任意的xyzXq(xy)≤q(xz)+q(zy);

    (c) 对任意的xX,若存在u=uxP使得q(xyn)≤u,且序列{yn}收敛于yyX,则d(xy)≤u

    (d) 对任意的cE,且cθ,存在eE,且eθ,使得当q(zx)≪eq(zy)≪e时,有d(xy)≪c.

    则称qX上的c-距离.

    下面给出锥b-度量空间中广义c-距离的定义:

    定义5[11] 设(Xd)是锥b-度量空间,s≥1为给定的实数.若映射q:X×XE满足下列条件:

    (a) 对任意的xyXq(xy)≥θ

    (b) 对任意的xyzXq(xz)≤s(q(xy)+q(yz));

    (c) 对任意的xX,若存在u=uxP使得q(xyn)≤u,且序列{yn}收敛于yyX,则d(xy)≤su

    (d) 对任意的cE,且cθ,存在eE,且eθ,使得当q(zx)≪eq(zy)≪e时,有d(xy)≪c.

    则称qX上的广义c1-距离.

    引理1[11] 设(Xd)是锥b-度量空间,qX上广义的c1-距离,{xn},{yn}是X中的序列,xyzX,{un}是锥P中收敛到θ的序列,则下列结论成立:

    (ⅰ)若q(xny)≤un,且q(xnz)≤un,则y=z

    (ⅱ)若q(xnyn)≤un,且q(xnz)≤un,则{yn}收敛到一点zX

    (ⅲ)若对任意的mn,有q(xnxm)≤un,则{xn}是X中的Cauchy列;

    (ⅳ)若q(yxn)≤un,则{xn}是X中的Cauchy列.

    引理2[11] 在锥b-度量空间中,收敛序列的极限是唯一的.

    注1 由于当q(xy)=θ时,不一定成立x=y,故本文的所有定理及其推论只对不动点的存在性给予证明,对不动点的唯一性没有证明.

  • 定理1 设(Xd)是完备的锥b-度量空间,qX上广义的c1-距离,s≥1,PE中的锥.假设连续映射f:XX是满射且对任意的xyX,有

    其中λ1λ2λ3是非负实数且不全同时为0,$\frac{1}{s}({\lambda _1} + {\lambda _3}) + {\lambda _2} > 1$.则fX中存在不动点.

     取定x0X,因为f是满射,故存在x1X,使得x0=f(x1).依次进行这个过程,可定义序列{xn}为:xn=f(xn+1)(n=0,1,2,…).

    xn-1=xn,则有xn-1=f(xn)=xn,故xnf的不动点.

    设对任意的n≥1,xn-1xn.则由(1)式有

    则有

    类似地,有

    $k = \frac{{1 - {\lambda _2}}}{{{\lambda _1} + {\lambda _3}}}$,因$\frac{1}{s}({\lambda _1} + {\lambda _3}) + {\lambda _2} > 1$,故$k \in {\rm{(}}0,\frac{1}{s})$.

    依次进行上述过程,可以得到

    则对任意的mn≥1,有

    因为

    故由引理1可知,{xn}是(Xd)中的Cauchy列.由(Xd)的完备性知,存在x*X,使得xnx*(n→∞).

    又因映射f是连续的,则有

    xn-1f(x*).则由引理2收敛序列的极限唯一性得f(x*)=x*.故x*f的不动点.

    推论1 设(Xd)是完备的锥b-度量空间,qX上广义的c1-距离,s≥1.若连续映射f:XX是满射,且对任意的xyX,有

    其中λ1λ2>0,$\frac{1}{s}{\lambda _1} + {\lambda _2} > 1$,且λ2<1.则fX中存在不动点.

     令定理1中的λ3=0,即证.

    推论2 设(Xd)是完备的锥b-度量空间,qX上广义的c1-距离,s≥1.若连续映射f:XX是满射,且对任意的xyX,有

    其中λ1s.则fX中存在不动点.

     令定理1中的λ2=λ3=0,即证.

    定理2 设(Xd)是完备的锥b-度量空间,qX上广义的c1-距离,s≥1,PE中的正规锥,K是其正规常数.设映射f:XX是满射,αβγX上的非负实值函数,满足以下条件:

    (ⅰ)对任意的xXα(x)≥α(f(x)),β(x)≥β(f(x)),γ(x)≥γ(f(x))且α(x)+γ(x)+(x)>sβ(x)<1;

    (ⅱ)对任意的xyX,有

    (ⅲ)对任意的yX,当f(y)≠y时,0<inf{║q(xy)║+║q(f(x),x)║:xX}.

    f有不动点x*X.并且迭代序列{f(xn)}收敛到不动点x*.

     对任意的x0X,因为f是满射,则存在x1X,使得x0=f(x1);存在x2X,使得x1=f(x2).依次进行此过程,可定义序列{xn}:xn=f(xn+1)(n=0,1,2,…).

    不失一般性,设对任意的n≥1,xn-1xn.则由(4)式有

    从而

    $h \in (0,\frac{1}{s})$.

    综上所述,有

    则对任意的mn≥1,有

    $h \in (0,\frac{1}{s}),\frac{{s{h^n}}}{{1 - sh}} \to \theta $,则由引理1可知,{xn}是X中的Cauchy列.由X的完备性知,存在x*X,使得xnx*(n→∞).

    根据(5)式及定义3中的(c),有

    P的正规性得

    而对任意的mn≥1,有

    f(x*)≠x*,则在(6),(7)式中令m=n+1,有

    矛盾.则f(x*)=x*,即x*fX中的不动点.

    推论3[11] 设(Xd)是完备的锥b-度量空间,qX上广义的c1-距离,s≥1,PE中的正规锥,K是其正规常数.设映射f:XX是满射,映射k:X→(s,+∞),满足以下条件:

    (ⅰ)对任意的xXk(x)≥k(f(x));

    (ⅱ)对任意的xyXq(f(x),f(y))≥k(x)q(xy);

    (ⅲ)对任意的yX,当f(y)≠y时,0<inf{║q(xy)║+║q(f(x),x)║:xX}.

    f有不动点x*X,且迭代序列{f(xn)}收敛于不动点.

    推论4 设(Xd)是完备的锥b-度量空间,qX上广义的c1-距离,s≥1.设映射f:XX是满射,且满足以下条件:

    (ⅰ)对任意的xyX,存在常数αβγ,满足α+γ+sβ<1,使得

    (ⅱ)对任意的yX,当f(y)≠y时,0<inf{║q(xy)║+║q(f(x),x)║:xX}.

    f有不动点x*X.且迭代序列{f(xn)}收敛于不动点.

    注2 定理1及其推论1和推论2去掉了锥的正规性,而定理2及其两个推论去掉了映射的连续性,并且扩张映射的系数也由1个增加到3个.本文的结论推广了文献[11]中的结果,使得锥b-度量空间中的扩张映射更具一般性.

参考文献 (16)

目录

/

返回文章
返回