留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

非自治随机p-Laplacian格点方程的后向紧随机吸引子

上一篇

下一篇

宋立, 李扬荣. 非自治随机p-Laplacian格点方程的后向紧随机吸引子[J]. 西南大学学报(自然科学版), 2021, 43(4): 92-99. doi: 10.13718/j.cnki.xdzk.2021.04.012
引用本文: 宋立, 李扬荣. 非自治随机p-Laplacian格点方程的后向紧随机吸引子[J]. 西南大学学报(自然科学版), 2021, 43(4): 92-99. doi: 10.13718/j.cnki.xdzk.2021.04.012
SONG Li, LI Yang-rong. Backward Compact Random Attractors for Non-Autonomous Stochastic p-Laplacian-Type Lattice Equation[J]. Journal of Southwest University Natural Science Edition, 2021, 43(4): 92-99. doi: 10.13718/j.cnki.xdzk.2021.04.012
Citation: SONG Li, LI Yang-rong. Backward Compact Random Attractors for Non-Autonomous Stochastic p-Laplacian-Type Lattice Equation[J]. Journal of Southwest University Natural Science Edition, 2021, 43(4): 92-99. doi: 10.13718/j.cnki.xdzk.2021.04.012

非自治随机p-Laplacian格点方程的后向紧随机吸引子

  • 基金项目: 国家自然科学基金项目(11571283)
详细信息
    作者简介:

    宋立, 硕士研究生, 主要从事无穷维随机动力系统与随机分析的研究 .

    通讯作者: 李扬荣, 博士生导师, 教授
  • 中图分类号: O193

Backward Compact Random Attractors for Non-Autonomous Stochastic p-Laplacian-Type Lattice Equation

  • 摘要: 在外力是后向缓增的情况下,通过对解的估计,证明了非自治随机p-Laplacian格点方程在空间l2上存在后向一致吸收集,且方程在吸收集上是后向渐进紧的. 再利用吸引子的存在性定理,证明了非自治随机p-Laplacian格点方程在空间l2上存在后向紧随机吸引子.
  • 加载中
  • [1] LI Y R, WANG R H, YIN J Y. Backward Compact Attractors for Non-Autonomous Benjamin-Bona-Mahony Equations on Unbounded Channels[J]. Discrete and Continuous Dynamical Systems(Series B), 2017, 22(7): 2569-2586. doi: 10.3934/dcdsb.2017092
    [2] WANG B X. Sufficient and Necessary Criteria for Existence of Pullback Attractors for Non-Compact Random Dynamical Systems[J]. Journal of Differential Equations, 2012, 253(5): 1544-1583. doi: 10.1016/j.jde.2012.05.015
    [3] WANG J H, GU A H. Existence of Backwards-Compact Pullback Attractors for Non-Autonomous Lattice Dynamical Systems[J]. Journal of Difference Equations and Applications, 2016, 22(12): 1906-1911. doi: 10.1080/10236198.2016.1254205
    [4] WANG B X. Asymptotic Behavior of Non-Autonomous Lattice Systems[J]. Journal of Mathematical Analysis and Applications, 2007, 331(1): 121-136. doi: 10.1016/j.jmaa.2006.08.070
    [5] 王凤玲, 吴柯楠, 李扬荣. 非线性随机Ginzburg-Landau方程的Wong-Zakai逼近[J]. 西南大学学报(自然科学版), 2019, 41(9): 87-92. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.09.011
    [6] 吴柯楠, 王凤玲, 李扬荣. 非自治随机Kuramoto-Sivashinsky方程的Wong-Zakai逼近[J]. 西南师范大学学报(自然科学版), 2020, 45(1): 31-36. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK202001007.htm
    [7] GU A H, KLOEDEN P E. Asymptotic Behavior of a Nonautonomous p-Laplacian Lattice System[J]. International Journal of Bifurcation and Chaos, 2016, 26(10): 1650174. doi: 10.1142/S0218127416501741
    [8] GU A H, LI Y R. Dynamic Behavior of Stochastic p-Laplacian-Type Lattice Equations[J]. Stochastics and Dynamics, 2017, 17(5): 1750040. doi: 10.1142/S021949371750040X
    [9] DAMASCELLI L. Comparison Theorems for Some Quasilinear Degenerate Elliptic Operators and Applications to Symmetry and Monotonicity Results[J]. Annales de l'Institut Henri Poincaré (Analyse Linéaire), 1998, 15(4): 493-516. doi: 10.1016/S0294-1449(98)80032-2
    [10] BATES P W, LISEI H, LU K N. Attractors for Stochastic Lattice Dynamical Systems[J]. Stochastics and Dynamics, 2006, 6(1): 1-21. doi: 10.1142/S0219493706001621
    [11] doi: http://www.sciencedirect.com/science/article/pii/S0167278918302616 WANG S L, LI Y R. Longtime Robustness of Pullback Random Attractors for Stochastic Magneto-Hydrodynamics Equations[J]. Physica D-Nonlinear Phenomena, 2018, 382: 46-57.
    [12] CARABALLO T, LU K N. Attractors for Stochastic Lattice Dynamical Systems with a Multiplicative Noise[J]. Frontiers of Mathematics in China, 2008, 3(3): 317-335. doi: 10.1007/s11464-008-0028-7
    [13] doi: http://www.mendeley.com/research/invariant-manifolds-stochastic-partial-differential-equations-1/ DUAN J Q, LU K N, SCHMALFUSS B. Invariant Manifolds for Stochastic Partial Differential Equations[J]. The Annals of Probability, 2003, 31(4): 2109-2135.
  • 加载中
计量
  • 文章访问数:  1630
  • HTML全文浏览数:  1630
  • PDF下载数:  150
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-10-21
  • 刊出日期:  2021-04-20

非自治随机p-Laplacian格点方程的后向紧随机吸引子

    通讯作者: 李扬荣, 博士生导师, 教授
    作者简介: 宋立, 硕士研究生, 主要从事无穷维随机动力系统与随机分析的研究
  • 西南大学 数学与统计学院, 重庆 400715
基金项目:  国家自然科学基金项目(11571283)

摘要: 在外力是后向缓增的情况下,通过对解的估计,证明了非自治随机p-Laplacian格点方程在空间l2上存在后向一致吸收集,且方程在吸收集上是后向渐进紧的. 再利用吸引子的存在性定理,证明了非自治随机p-Laplacian格点方程在空间l2上存在后向紧随机吸引子.

English Abstract

  • 若随机吸引子的后向并是预紧的,则称该吸引子为后向紧随机吸引子. 文献[1-2]对非自治动力系统所产生的拉回吸引子的存在性和后向紧性做了深入的研究,并建立了相对完善的理论体系. 文献[3-6]对非自治方程的吸引子的存在性进行了研究,文献[7-8]对自治p-Laplacian格点方程吸引子的存在性做了研究. 本文将在文献[8]的基础上,研究非自治情况下,带有乘法噪音的随机p-Laplacian格点方程的后向紧吸引子的存在性.

  • 定义1   设(Ω$\mathscr{F}$P)是一个概率空间,θ={θt}t∈ℝ:ℝ×ΩΩ是一簇($\mathscr{B}$(ℝ)×$\mathscr{F}$$\mathscr{F}$)保测映射,使得θt(0,·)是Ω上的恒等映射,且满足

    则称(Ω$\mathscr{F}$Pθ)是一个度量动力系统.

    定义2  令(Ω$\mathscr{F}$Pθ)是度量动力系统,若存在映射Φ:ℝ+×ℝ×Ω×XX,使得对任意ωΩτ∈ℝ及ts∈ℝ+,满足:

    (ⅰ) Φ(·,τ,·,·):ℝ+×Ω×XX是(B(ℝ+$\mathscr{F}$×B(X),B(X))可测的;

    (ⅱ) Φ(0,τω,·)是X上的恒等映射;

    (ⅲ) Φ(t+sτω,·)=Φ(tτ+sθsω,·)$\circ $Φ(sτω,·);

    (ⅳ) Φ(tτω,·):XX是连续的.

    则称映射Φ是关于(Ω$\mathscr{F}$Pθ)的非自治动力系统,也称协循环.

    定义3  设$\mathscr{D}$={$\mathscr{D}$(tω)}是X中的集合,若对∀xXτ∈ℝ,函数fωd(x$\mathscr{D}$(tω))是($\mathscr{F}$$\mathscr{B}$(ℝ+))可测的,则称D为随机集.

    定义4  令$\mathscr{B}$X的所有有界非空子集族构成的集合,假设集合

    若对任意的τ∈ℝ,ωΩD$\mathscr{B}$,存在T=T(τωD)>0,使得当tT时有

    则称$\mathscr{K}$Φ$\mathscr{B}$-拉回吸收集.

  • 本文将在l2空间上讨论带有乘法噪音的非自治随机p-Laplacian格点方程

    其中$\mathbb{Z}$代表整数集,λα>0,p>2,W(t)是双边实值Wiener过程,$\circ $代表Stratonovich积分意义下的乘法噪音. 对于外力项$f{{\left( {{f}_{i}} \right)}_{i\in \mathbb{Z}}}$和非自治项$g{{\left( {{g}_{i}} \right)}_{i\in \mathbb{Z}}}$有如下假设:

    (F1) fiC1(ℝ),$\underset{i\in \mathbb{Z}}\sup\limits\, \left| f_{i}^{\prime }(u) \right|$局部有界,且fi满足

    (F2) gLloc2(ℝ,l2),且满足

    定义l2上的有界算子:

    因此,根据算子的定义,有

    微分方程(1)可整理为

    下面证明方程(6)能生成随机动力系统.

    做变量替换v(t)=e-αz(θtω)u(t). 其中u(t)是方程(6)的解,$z\left( {{\theta }_{t}}\omega \right)=-\int_{-\infty }^{0}{{{\text{e}}^{r}}}{{\theta }_{t}}\omega (r)\text{d}r$是方程dz+zdt=dω(t)的解. 由文献[9-10]可知,对任意ωΩz(θtω)关于t连续,且满足

    因此方程(6)可转化为关于v的随机微分方程

    由文献[8]可知,对任意T>0,v0l2ωΩ,方程(8)存在唯一的解v(·,τωv0)∈C([τ,+∞),l2),且依赖初值v0连续. 因此方程(8)在(Ω$\mathscr{F}$P,{θt}t∈ℝ)上能生成一个连续的随机动力系统{Φ(t)}t≥0,即对v0l2t≥0,τ∈ℝ,和ωΩ,有

    在下文中,设${{\mathbb{D}}_{0}}$X中所有缓增集构成的集合,$\mathbb{D}$X中所有后向缓增集构成的集合. 若集合$\mathscr{D}_{0}$满足

    则称集合$\mathscr{D}_{0}$为缓增集;若集合$\mathscr{D}$满足

    则称集合$\mathscr{D}$为后向缓增集.

    假设集合${{\mathbb{D}}_{0}}$$\mathbb{D}$是包含封闭的. 若集合$\mathbb{D}$满足$\mathscr{A}$${\tilde{\mathscr{A}}}$${\tilde{\mathscr{A}}}$$\mathbb{D}$,有${\tilde{\mathscr{A}}}$$\mathbb{D}$成立,则称集合$\mathbb{D}$是包含封闭的.

  • 引理1  若假设(F1),(F2)成立,那么有:

    (ⅰ) 对任意缓增集${{\mathscr{D}}_{0}}$${{\mathbb{D}}_{0}}$,任意的τ$\mathbb{R}$ωΩvτ-t${{\mathscr{D}}_{0}}$(τ-tθ-tω),存在T0=T0(${{\mathscr{D}}_{0}}$τω)≥1,使得

    其中R0(τω)是可测函数,定义为

    (ⅱ) 对任意后向缓增集${\tilde{\mathscr{D}}}$$\mathbb{D}$,任意的τ∈ℝ,ωΩvs-t${\tilde{\mathscr{D}}}$(s-tθ-tω),存在T=T(${\tilde{\mathscr{D}}}$τω)≥1,使得

    其中

      对任意固定的τ∈ℝ,ωΩvs-tD(s-tθ-tω),令v(r)=v(rs-tθ-sωvs-t),其中sτ. v(r)与方程(8)作内积可得

    利用(2),(5)式整理(15)式,可得

    利用Hölder不等式及Young不等式,有

    代入(16)式可得

    对(18)式利用Gronwall不等式,计算可得

    再由(7)式、(9)式可知,存在T0(${{\mathscr{D}}_{0}}$sω)≥1,使得当tT0时,有

    因此(11)式得证.

    对(19)式关于s∈(-∞,τ]取上确界,由于vs-t$\mathscr{D}$(s-tθ-tω)(sτ),结合(7)式、(10)式可知,存在T=T(sω$\mathscr{D}$)≥1,使得当tT时,有

    因此可以得到

    即(13)式得证.

    引理2  若假设(F1),(F2)成立,则有如下结论:

    (ⅰ) 协循环{Φ(t)}t≥0存在${{\mathbb{D}}_{0}}$-拉回随机吸收集${{\mathscr{k}}_{0}}$${{\mathbb{D}}_{0}}$,其中

    (ⅱ) 协循环{Φ(t)}t≥0存在$\mathbb{D}$-拉回后向一致吸收集$\mathscr{K}$$\mathbb{D}$,其中

      由(11)式可知${{\mathscr{k}}_{0}}$是吸收集. 又因为函数ωR0是随机变量的积分,因此R0(τω)是可测的,进而可知${{\mathscr{k}}_{0}}$也是可测的. 下证${{\mathscr{k}}_{0}}$${{\mathbb{D}}_{0}}$.

    首先证明R(τω)是有限的. 根据(7)式可知,对任意ε>0,存在C=C(εω)>0,使得

    因此,在(25)式中令$\varepsilon <\frac{\lambda }{4\alpha }$,结合(3)式可得

    再证$\mathscr{K}$${{\mathbb{D}}_{0}}$. 令${{\alpha }_{1}}=\min \left\{ \lambda , \frac{\gamma }{2} \right\}$,在(25)式中令$\varepsilon =\frac{{{\alpha }_{1}}}{4\alpha }$,结合(3)式可知,对任意的γ∈ℝ,有

    所以$\mathscr{K}$${{\mathbb{D}}_{0}}$. 又由于${\mathscr{K}}_{0}$$\mathscr{K}$,因此${\mathscr{K}}_{0}$${{\mathbb{D}}_{0}}$.

    最后证明$\mathscr{K}$$\mathbb{D}$. 根据(24)式,易知集合$\mathscr{K}$是递增的,即

    因此,结合$\mathscr{K}$${{\mathbb{D}}_{0}}$可知,对任意γ>0,有

    即证得$\mathscr{K}$$\mathbb{D}$. 再由(13)式可知,$\mathscr{K}$在任意集合$\mathscr{D}$$\mathbb{D}$上是后向一致吸收的.

    引理3  若假设(F1),(F2)成立,则对∀ε>0,(τω$\mathscr{D}$)∈($\mathbb{R}$×Ω×$\mathbb{D}$),vs-t$\mathscr{D}$(s-tθ-tω),存在T(ετω$\mathscr{D}$)>0,N(ετω$\mathscr{D}$)≥1,使得

      构造光滑函数ρ,满足0≤ρ≤1,且当|s|≤1时,ρ=0;当|s|≥2时,ρ=1. 并假设存在常数c0,使得对任意s∈ℝ,有|ρ(s)|≤c0. 令N是一个固定的整数,设

    x与(8)式作内积可得

    其中

    由于|ρ(s)|≤c0,因此

    故由(29)式、(30)式可得

    由假设(F1)可知

    由Young不等式可知

    结合(31)-(33)式,可得

    对(34)式运用Gronwall引理,计算整理可得

    由于vs-t$\mathscr{D}$(s-tθ-tω)(sτ),结合(7),(10)式可得

    在(25)式中令$\varepsilon <\min \left\{ \frac{\lambda }{2\alpha (p-2)}, \frac{\lambda }{4\alpha } \right\}$,由引理1与假设(F2)可知,存在T>0,当tT时,有

    因此,结合(36)-(38)式可得,对任意的ε>0,(τω$\mathscr{D}$)∈($\mathbb{R}$×Ω×$\mathbb{D}$),vs-t$\mathscr{D}$(s-tθ-tω),存在T(ετω$\mathscr{D}$)>0,N(ετω$\mathscr{D}$)≥1,使得

    引理4  若假设(F1),(F2)成立,则协循环{Φ(t)}t≥0在吸收集$\mathscr{K}$$\mathscr{D}$上是后向渐近紧的.

      对任意固定的τ∈ℝ,ωΩ,取任意序列{τk}≤τ,{tk}→+∞(k→+∞),及任意的v0K(τk-tkθ-tkω). 定义vk=Φ(tkτk-tkθ-tkωv0)=v(τkτk-tkθ-τkωv0),下证{vkkN}在l2中是预紧的.

    由引理1可知{vk}在l2中有界,故存在${\tilde{v}}$l2,使得

    下面只需证明该弱收敛实际上是强收敛,即只需证明:

    对任意ε>0,存在T>0和K≥1,使得当kK时,有

    注意到

    一方面,由引理3可知,对任意ε>0,存在T1>0,N1K1≥1,使得当kK1时,有

    另一方面,由于在l2中,有vk${\tilde{v}}$,因此,当|i|≤N时,在ℝ2N+1中有vk${\tilde{v}}$. 故对任意ε>0,存在T2>0,N2K2≥1,使得当kK2时,有

    由(42)-(44)式可知,令

    则对任意ε>0,存在TTKK,使得当kK时,有

    即证得协循环{Φ(t)}t≥0在吸收集K上是后向渐近紧的.

  • 定理1  若假设(F1),(F2)成立,则方程(1)生成的动力系统存在后向紧随机吸引子.

      引理2和引理4的结论满足了文献[11]的定理3.9中拉回吸引子的存在性条件,因此方程(8)生成的非自治随机动力系统Φ(t)存在唯一的后向紧$\mathscr{D}$-拉回吸引子$\mathscr{A}$$\mathscr{D}$,和唯一的可测${{\mathscr{D}}_{0}}$-拉回吸引子${{\mathscr{A}}_{0}}$${{\mathscr{D}}_{0}}$. 再由文献[9]的定理6.1知$\mathscr{A}$=${{\mathscr{A}}_{0}}$,故吸引子$\mathscr{A}$也是随机的,即Φ(t)存在唯一的后向紧$\mathscr{D}$-拉回随机吸引子$\mathscr{A}$$\mathscr{D}$. 再由文献[12-13]知方程(1)与方程(8)生成的随机动力系统共轭,进而可知方程(1)存在后向紧随机吸引子.

参考文献 (13)

目录

/

返回文章
返回