留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类常微分方程和偏微分方程的级联系统的边界控制

上一篇

下一篇

雷嫄, 白艺昕, 谢成康. 一类常微分方程和偏微分方程的级联系统的边界控制[J]. 西南大学学报(自然科学版), 2021, 43(9): 54-58. doi: 10.13718/j.cnki.xdzk.2021.09.007
引用本文: 雷嫄, 白艺昕, 谢成康. 一类常微分方程和偏微分方程的级联系统的边界控制[J]. 西南大学学报(自然科学版), 2021, 43(9): 54-58. doi: 10.13718/j.cnki.xdzk.2021.09.007
LEI Yuan, BAI Yixin, XIE Chengkang. Stabilization of an ODE-PDE Cascaded System by Boundary Control[J]. Journal of Southwest University Natural Science Edition, 2021, 43(9): 54-58. doi: 10.13718/j.cnki.xdzk.2021.09.007
Citation: LEI Yuan, BAI Yixin, XIE Chengkang. Stabilization of an ODE-PDE Cascaded System by Boundary Control[J]. Journal of Southwest University Natural Science Edition, 2021, 43(9): 54-58. doi: 10.13718/j.cnki.xdzk.2021.09.007

一类常微分方程和偏微分方程的级联系统的边界控制

  • 基金项目: 国家自然科学基金项目(11671326,11571055,11401487);重庆市基础与前沿研究计划项目(cstc2016jcyjA0239)
详细信息
    作者简介:

    雷嫄,硕士,主要从事偏级分方程的研究 .

    通讯作者: 谢成康,教授
  • 中图分类号: O231.2

Stabilization of an ODE-PDE Cascaded System by Boundary Control

  • 摘要: 考虑一类常微分方程组和偏微分方程组的级联系统的稳定性. 通过Backstepping的方法,设计出系统的控制律,并证明了闭环系统的指数稳定性.
  • 加载中
  • [1] HE C H, XIE C K, ZHEN Z Y. Explicit Control Law of a Coupled Reaction-Diffusion Process[J]. Journal of the Franklin Institute, 2017, 354(5): 2087-2101. doi: 10.1016/j.jfranklin.2017.01.013
    [2] ZHAO A L, XIE C K. Stabilization of Coupled Linear Plant and Reaction-Diffusion Process[J]. Journal of the Franklin Institute, 2014, 351(2): 857-877. doi: 10.1016/j.jfranklin.2013.09.012
    [3] TANG S X, XIE C K. Stabilization for a Coupled PDE-ODE Control System[J]. Journal of the Franklin Institute, 2011, 348(8): 2142-2155. doi: 10.1016/j.jfranklin.2011.06.008
    [4] TANG S X, XIE C K. Stabilization of a Coupled PDE-ODE System by Boundary Control[C]//49th IEEE Conference on Decision and Control (CDC). New York: IEEE Computer Society Press,, 2010: 4042-4047.
    [5] ANTONIO SUSTOG, KRSTICM. Control of PDE-ODE Cascades with Neumann Interconnections[J]. Journal of the Franklin Institute, 2010, 347(1): 284-314. doi: 10.1016/j.jfranklin.2009.09.005
    [6] ZHOU Z C, TANG S X. Boundary Stabilization of a Coupled Wave-ODE System with Internal Anti-Damping[J]. International Journal of Control, 2012, 85(11): 1683-1693. doi: 10.1080/00207179.2012.696704
    [7] LASIECKA I. Mathematical Control Theory of Coupled PDEs[M]. Philadelphia: Society for Industrial and AppliedMathematics, 2002.
    [8] SMYSHLYAEV A, KRSTIC M. Adaptive Control of Parabolic PDEs[M]. Princeton: Princeton University Press, 2010.
    [9] KRSTICM, SMYSHLYAEV A. Boundary Control of PDEs. A Course on Backstepping Designs[M]. Philadelphia: SIAM, 2008: 1-63.
    [10] KRSTICM. Delay Compensation for Nonlinear, Adaptive, and PDE Systems[M]. Basel: Birkhauser, 2009: 1-83.
    [11] doi: http://www.ixueshu.com/document/d0d3fa8d5e2babce7d721b29bfac1625.html TANG S X, XIE C K. State and Output Feedback Boundary Control for a Coupled PDE-ODE System[J]. Systems & Control Letters, 2011, 60(8): 540-545.
    [12] TANG S X, XIE C K. Stabilization for a Coupled PDE-ODE Control System[J]. Journal of the Franklin Institute, 2011, 348(8): 2142-2155. doi: 10.1016/j.jfranklin.2011.06.008
    [13] ZHAO A L, XIE C K. Stabilization of Coupled Linear Plant and Reaction-Diffusion Process[J]. Journal of the Franklin Institute, 2014, 351(2): 857-877. doi: 10.1016/j.jfranklin.2013.09.012
    [14] HE C H, XIE C K, ZHEN Z Y. Explicit Control Law of a Coupled Reaction-Diffusion Process[J]. Journal of the Franklin Institute, 2017, 354(5): 2087-2101. doi: 10.1016/j.jfranklin.2017.01.013
    [15] doi: http://www.sciencedirect.com/science/article/pii/S0167691120300232 LIU X, XIE C. Control Law in Analytic Expression of a System Coupled by Reaction-Diffusion Equation[J]. Systems & Control Letters, 2020, 137: 1-5.
    [16] LI G P, XIE C K. Feedback Stabilization of Reaction-Diffusion Equation in a Two-Dimensional Region[C]//49th IEEE Conference on Decision and Control (CDC). New York: IEEE Computer Society Press, 2010: 2985-2989.
    [17] 邓静, 谢成康, 刘忠诚. 一类耦合反应扩散系统的边界控制[J]. 西南大学学报(自然科学版), 2017, 39(5): 126-131. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2017.05.019
  • 加载中
计量
  • 文章访问数:  1234
  • HTML全文浏览数:  1234
  • PDF下载数:  266
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-16
  • 刊出日期:  2021-09-20

一类常微分方程和偏微分方程的级联系统的边界控制

    通讯作者: 谢成康,教授
    作者简介: 雷嫄,硕士,主要从事偏级分方程的研究
  • 西南大学 数学与统计学院,重庆 400715
基金项目:  国家自然科学基金项目(11671326,11571055,11401487);重庆市基础与前沿研究计划项目(cstc2016jcyjA0239)

摘要: 考虑一类常微分方程组和偏微分方程组的级联系统的稳定性. 通过Backstepping的方法,设计出系统的控制律,并证明了闭环系统的指数稳定性.

English Abstract

  • 本文考虑如下控制系统

    其中:$ \boldsymbol{X}\left( t \right)\in {{\mathbb{R}}^{n}} $表示流体的温度、湿度、密度等物理参数,矩阵A$ \boldsymbol{B}\in {{\mathbb{R}}^{n\times n}} $且(AB)能稳,$ \boldsymbol{U}\left( x, t \right)\in {{\mathbb{R}}^{n}} $为状态变量,矩阵$ {\mathit{\pmb{\Lambda}}} \in {{\mathbb{R}}^{n\times n}}, \boldsymbol{C}\left( t \right)\in {{\mathbb{R}}^{n}} $是控制输入,0表示零矩阵或零向量.

  • 本文引入一个变换$ \left( \boldsymbol{X}, \boldsymbol{U} \right)\mapsto \left( \boldsymbol{X}, \boldsymbol{W} \right) $

    这里的核函数$ {\mathit{\pmb{\Phi}}} \left( x, y \right)\in {{\mathbb{R}}^{n\times n}} $和矩阵函数$ {\mathit{\pmb{\Psi}}} \left( x \right)\in {{\mathbb{R}}^{n\times n}} $待定. 该变换将系统(1)转换为一个指数稳定的目标系统,从而设计出控制律,那么闭环系统的稳定性就可以通过该变换及其逆变换建立起来. 选定的目标系统如下

    其中选定$ \boldsymbol{K}\in {{\mathbb{R}}^{n\times n}} $使得A+BK是Hurwitz矩阵,为了满足方程组(3)第4式,取控制律为

    取核函数Φ(xy)和矩阵函数Ψ(x)满足如下方程组

    通过方程组(2)第2式以及方程组(3)第3式,可以得到矩阵函数Ψ(x)的一个边界条件为

    此外,状态X(t)满足方程组(1)第1式和方程组(3)第1式,

    可取如下条件成立

    首先,根据矩阵函数方程组(5)第4式及其边界条件(6)和(8),本文得到矩阵方程的一个级数解为

    其次由方程组(5)及式(9),可将核函数满足的边界条件转化为

    可将核函数化为积分方程,再利用逐次逼近法求得近似解,其求解过程可参考文献[15]. 最后得到核函数解为

  • 首先证明目标系统(3)的稳定性.

    引理1  对于目标系统(3),存在α>0,β>0,使得

    即目标系统在H1范数意义下指数稳定,其中‖·‖表示欧几里得范数,‖W(t)‖H1表示W(t)的H1范数,即

      选取李雅普诺夫函数

    这里的矩阵P>0是Lyapunov函数

    的解,其中I表示n阶单位阵,a>0是需要被确定的参数. 对Lyapunov函数(13)两边关于t求导,由于W满足方程组(3),所以有

    通过分部积分,由边界条件方程组(3)第3式和第(4)式,有

    因为W满足方程组(3)第1式,所以V(t)满足

    由Agmon不等式、Cauchy-Schwartz不等式和Young不等式

    再由Poincare不等式及

    又因为

    其中λmax(P)是P的最大特征值,那么,由(13)式可得

    其中

    就可以得到

    这里$ \beta =\frac{1}{2{{\alpha }_{2}}} $. 由式(17)和式(18)得到式(12)成立,从而就证明了闭环系统是稳定的.

    证明变换(2)可逆,需找到它的逆变换,故假设逆变换具有如下形式

    按照求解核函数Φ(xy),Ψ(x)的思路和方法,能得到

    引理2  变换(2)及其逆变换(19)均为有界算子,即存在正整数δδγγ使得

      从变换(2)第2式及范数的性质,可得

    接下来需要对第2项和第3项进行估计. 首先

    根据Holder不等式

    其中

    同理由逆变换可得

    其中

    因此,由式(24),(25),(26)及(27),当取

    时式(22)成立. 同理可证式(23)成立.

    根据引理1和引理2可以得到如下定理.

    定理1  设Φ(1,y)和Ψ(1)是方程(11)及(9)的解. 考虑系统(1),控制律为(4),则存在常数σ使得

    即闭环系统在上述范数下是指数稳定的.

参考文献 (17)

目录

/

返回文章
返回