-
开放科学(资源服务)标志码(OSID):
-
未来全球气温的持续上升会加剧全球水循环强度和过程的改变,导致全球降雨格局发生变化[1]. 降雨格局的变化主要体现在降雨量的变化、降雨时间分布的变化和极端降雨事件的增加等方面[2-3]. 相对于降雨量的变化,极端降雨事件的增加对生态系统进程的影响更为重要[4-5]. 我国未来极端降雨事件也呈增加的趋势[6],这种极端气候的增加会通过影响陆地植物的生理、行为以及初级生产力而使全球的生物群落发生变化,进而改变植物群落的结构和生态系统服务功能[7-8].
植物功能性状是能够响应生存环境的变化并(或)对生态系统功能有一定影响的植物性状[9-10]. 它不仅能够客观地反映植物自身生理过程及其对外部环境适应策略的差异,还可有效地将群落结构与环境以及生态系统过程等密切联系起来,揭示植物对生态系统过程与功能的影响[11]. 叶片和根系作为植物的地上和地下资源吸收器官,二者的功能性状与群落组成和生态系统的功能密切相关[12-13]. 当未来降雨格局变化时,植物的叶片和根系的功能性状可能会呈现出不同的响应[14-16]. 大部分研究表明二者之间的关系表现为协同关系[17-18],即植物的叶片和根系有着相似的表现型;而少数研究结果表明二者之间的关系表现为权衡关系[19-20],即植物将增加对地上器官的分配和投入,减少对地下器官的分配和投入. 分析植物功能性状对未来降雨极端化的响应,可为探寻未来降雨极端化下植物的生长策略提供科学依据[21].
西南喀斯特地区作为世界上最大的连续喀斯特分布地区之一,由于其具有地表土被薄且不连续、储水保水能力不强和岩石裸露率高等特点,使土壤水分成为该地区生态系统重要的限制因素[22]. 由于社会经济的快速发展和城镇化的推进,耕地破碎化的现象日趋严峻[23],越来越多的农田被弃耕[24],形成了大面积的弃耕地. 近年来,关于弃耕地上的植被恢复日益成为喀斯特地区生态建设的重要内容. 弃耕地的植被恢复可以最大限度地发挥其对土壤碳储存和其他温室气体(如CH4和N2O)排放的积极影响[25],其中喀斯特弃耕地具有显著增加土壤有机碳和全氮的潜力[26]. 因此,开展喀斯特地区的植被恢复工作对于增加废弃农田的碳储存以及应对气候变化具有重要的意义.
随着弃耕年限的增加,植物群落会逐渐从草本群落向灌木群落演替,其地上生物量也会明显增加,这有利于植物更好地适应环境[27]. 然而,当极端干旱事件增加时,植物可能会增加对根系的投资来适应环境[28]. 本研究以喀斯特弃耕地12种草本植物的4组叶片和根系的功能性状指标为研究对象,探究以下问题:①在未来降雨格局变化的背景下,不同草本植物叶片、根系性状是如何变化的?②与光合作用有关的叶片性状和与养分吸收有关的根系性状之间是协同关系还是权衡关系?
Effects of Rainfall Extremes on Functional Traits of Karst Herbaceous Plants
-
摘要: 植物功能性状不仅能够客观地反映植物对外部环境适应策略的差异,还可以揭示植物对群落结构和生态系统过程与功能的影响. 探究植物叶片和根系主要性状对降雨极端化的响应,对揭示西南喀斯特地区草本植物对环境变化的响应和适应策略至关重要. 以西南喀斯特弃耕地群落演替初期草本植物为研究对象,分析在未来降雨格局变化的背景下,随着不同级别降雨强度的极端化,喀斯特弃耕地中不同草本植物的叶片、根系功能性状的响应及二者之间的关系. 结果表明:①植物功能性状的变异主要受到种间变异的影响,但叶组织密度的变异主要受种内变异的控制;②短期内,除叶组织密度外,降雨极端化对各植物叶片和根系的功能性状并无统计学意义;③叶片与根系的成对性状之间的关系为协同关系,且在短期内这种协同关系并没有随着降雨极端化而发生改变.Abstract: Plant functional traits can not only objectively reflect the differences of plants adaptation strategies to the external environment, but also reveal the effects of organisms on community structure and ecosystem processes and functions. It is very important to explore the response of the important traits of plant leaf and root to rainfall extremes to reveal the response and adaptation strategies of herbaceous plants to environmental changes in karst areas of Southwest China. The present study took herbaceous plants in abandoned farmland of karst region in Southwest China as the research object to analyze the response of leaf and root functional traits of different herbaceous plants and the relationship between them under the background of future rainfall pattern change. The results showed that: ① The variation of plant functional traits was mainly affected by interspecific variation, but the leaf tissue density was mainly affected by intraspecific variation. ② In the short term, rainfall extremes had no significant effect on leaf and root functional traits except leaf tissue density. ③ The relationship between paired traits of leaf and root was synergistic, and this synergistic relationship did not change with rainfall extremes in the short term. The results can provide a scientific basis for understanding the environmental adaptation strategies of herbaceous plants in karst ecosystem, and benefit for predicting community dynamics and accelerating the vegetation restoration in abandoned farmland of karst region.
-
Key words:
- karst /
- abandoned farmland /
- extreme rainfall /
- leaf and root traits /
- vegetation restoration .
-
表 1 中梁山喀斯特弃耕地12种草本植物
序号 物种名 科名 生活型 1 稗(Echinochloa crus-galli) 禾本科 一年生草本 2 狗尾草(Setaria viridis) 禾本科 一年生草本 3 金色狗尾草(Setaria pumila) 禾本科 一年生草本 4 升马唐(Digitaria ciliaris) 禾本科 一年生草本 5 鸭跖草(Commelina communis) 鸭跖草科 一年生草本 6 蛇莓(Duchesnea indica) 蔷薇科 多年生草本 7 丛枝蓼(Polygonum posumbu) 蓼科 一年生草本 8 铁苋菜(Acalypha australis) 大戟科 一年生草本 9 小蓬草(Erigeron canadensis) 菊科 一年生草本 10 喜旱莲子草(Alternanthera philoxeroides) 苋科 一年生草本 11 紫菀(Aster tataricus) 菊科 多年生草本 12 酢浆草(Oxalis corniculata) 酢浆草科 多年生草本 表 2 地上地下成对性状的生态学意义
成对性状 生态学意义 叶厚度(LT,mm)—根直径(RD,mm) 植物叶片水分的供应和存储 比叶面积(SLA,cm2·g-1)—比根长(SRL,cm·g-1) 植物获取资源的能力 叶组织密度(LTD,g·cm-3)—根组织密度(RTD,g·cm-3) 植物水分保持及防御外界的能力 叶氮质量分数(LNC,mg·g-1)—根氮质量分数(RNC,mg·g-1) 与光合速率和植物养分储存相关,反映植物生长及生理机制调节 表 3 喀斯特弃耕地12种草本植物叶和根功能性状的变异系数
物种 种内性状变异系数/% 叶厚度/ cm 比叶面积/ (cm2·g-1) 叶组织密度/ (g·cm-3) 叶氮质量分数/ (mg·g-1) 根直径/ mm 比根长/ (cm·g-1) 根组织密度/ (g·cm-3) 根氮质量分数/ (mg·g-1) 稗 18.74 10.37 11.99 11.30 12.04 30.14 5.49 16.19 狗尾草 13.54 8.07 10.12 15.87 14.84 18.58 8.28 9.23 金色狗尾草 7.47 2.36 6.44 22.34 18.07 28.04 33.71 5.54 升马唐 22.76 11.67 14.90 8.09 20.92 48.39 21.96 6.79 鸭跖草 6.59 3.70 5.76 25.04 11.89 22.29 11.51 26.19 酢浆草 14.46 40.42 27.56 6.56 22.92 26.15 27.06 5.82 丛枝蓼 14.37 10.70 16.50 7.13 14.63 14.78 21.52 11.23 蛇莓 15.40 26.03 23.85 15.59 5.29 19.72 12.10 14.13 铁苋菜 27.17 9.52 79.57 6.70 29.89 141.66 62.79 19.11 小飞蓬 2.47 5.65 8.03 11.86 14.20 23.03 28.96 23.39 喜旱莲子草 3.95 7.20 48.17 13.35 14.37 33.21 15.80 15.40 紫菀 19.31 9.03 35.96 17.78 18.46 31.06 23.34 5.22 种间性状变异系数/% 23.83 29.59 60.18 22.54 28.08 71.33 37.90 23.69 表 4 降雨极端化对喀斯特弃耕地草本植物叶和根功能性状的影响(x±s)
测量指标 处理组 CK T10 T25 T50 p值 叶厚度/cm 0.26±0.13 0.26±0.08 0.23±0.10 0.25±0.10 0.07 比叶面积/(cm2·g-1) 334.95±123.72 309.05±111.76 322.71±110.140 378.00±336.66 0.56 叶组织密度/(g·cm-3) 0.19±0.27 0.16±0.13 0.19±0.24 0.14±0.04 0.01 叶氮质量分数/(mg·g-1) 16.32±6.67 15.31±5.70 16.74±6.44 14.52±5.25 0.45 根直径/mm 0.66±0.70 0.67±0.69 0.68±0.87 0.67±0.58 0.14 比根长/(cm·g-1) 2 232.19±1 740.78 2 113.55±1 741.74 3 747.80±6 479.62 2 152.19±2 695.66 0.34 根组织密度/(g·cm-3) 0.40±0.25 0.33±0.14 0.40±0.22 0.39±0.22 0.51 根氮质量分数/(mg·g-1) 5.89±1.74 6.13±1.68 6.83±2.36 6.74±3.04 0.38 -
[1] IPCC. Clinate change 2021: the physical science basis[M/OL]. [2021-08-01]. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.Pdf. [2] EASTERLING D R, MEEHL G A, PARMESAN C, et al. Climate Extremes: Observations, Modeling, and Impacts[J]. Science, 2000, 289(5487): 2068-2074. doi: 10.1126/science.289.5487.2068 [3] MEEHL G A, ARBLASTER J M, TEBALDI C. Understanding Future Patterns of Increased Precipitation Intensity in Climate Model Simulations[J]. Geophysical Research Letters, 2005, 32(18): 1-4. [4] REYER C P, LEUZINGER S, RAMMIG A, et al. A Plant's Perspective of Extremes: Terrestrial Plant Responses to Changing Climatic Variability[J]. Global Change Biology, 2013, 19(1): 75-89. doi: 10.1111/gcb.12023 [5] THOMPSON R M, BEARDALL J, BERINGER J, et al. Means and Extremes: Building Variability into Community-Level Climate Change Experiments[J]. Ecology Letters, 2013, 16(6): 799-806. doi: 10.1111/ele.12095 [6] 中国气象局气候变化中心. 中国气候变化蓝皮书(2021)[M]. 北京: 科学出版社, 2021. [7] BOONMAN C C F, HUIJBREGTS M A J, BENÍTEZ-LÓPEZ A, et al. Trait-Based Projections of Climate Change Effects on Global Biome Distributions[J]. Diversity and Distributions, 2022, 28(1): 25-37. doi: 10.1111/ddi.13431 [8] 张腾, 郑秋敏, 王玉玲, 等. 缙云秋海棠与主要伴生物种的种间关联性研究[J]. 西南师范大学学报(自然科学版), 2019, 44(9): 52-59. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201909010.htm [9] PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide[J]. Australian Journal of Botany, 2013, 61(3): 167. doi: 10.1071/BT12225 [10] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201504001.htm [11] CHENG H, GONG Y B, ZUO X A. Precipitation Variability Affects Aboveground Biomass Directly and Indirectly via Plant Functional Traits in the Desert Steppe of Inner Mongolia, Northern China[J]. Frontiers in Plant Science, 2021, 12: 674527. doi: 10.3389/fpls.2021.674527 [12] MYERS-SMITH I H, THOMAS H J D, BJORKMAN A D. Plant Traits Inform Predictions of Tundra Responses to Global Change[J]. The New Phytologist, 2019, 221(4): 1742-1748. doi: 10.1111/nph.15592 [13] 郑华, 潘权, 文志, 等. 植物功能性状与森林生态系统服务的关系研究综述[J]. 生态学报, 2021, 41(20): 7901-7912. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202120001.htm [14] ZHOU M, WANG J, BAI W M, et al. The Response of Root Traits to Precipitation Change of Herbaceous Species in Temperate Steppes[J]. Functional Ecology, 2019, 33(10): 2030-2041. doi: 10.1111/1365-2435.13420 [15] WELLES S R, FUNK J L. Patterns of Intraspecific Trait Variation along an Aridity Gradient Suggest both Drought Escape and Drought Tolerance Strategies in an Invasive Herb[J]. Annals of Botany, 2020, 127(4): 461-471. [16] YANG Y Z, KANG L, ZHAO J, et al. Quantifying Leaf Trait Covariations and Their Relationships with Plant Adaptation Strategies along an Aridity Gradient[J]. Biology, 2021, 10(10): 1066. doi: 10.3390/biology10101066 [17] HU Y K, PAN X, YANG X J, et al. Is there Coordination of Leaf and Fine Root Traits at Local Scales? a Test in Temperate Forest Swamps[J]. Ecology and Evolution, 2019, 9(15): 8714-8723. doi: 10.1002/ece3.5421 [18] LIU G F, FRESCHET G T, PAN X, et al. Coordinated Variation in Leaf and Root Traits across Multiple Spatial Scales in Chinese Semi-Arid and Arid Ecosystems[J]. The New Phytologist, 2010, 188(2): 543-553. doi: 10.1111/j.1469-8137.2010.03388.x [19] DU L S, LIU H Y, GUAN W B, et al. Drought Affects the Coordination of Belowground and Aboveground Resource-Related Traits in Solidago Canadensis in China[J]. Ecology and Evolution, 2019, 9(17): 9948-9960. doi: 10.1002/ece3.5536 [20] 赵广帅, 刘珉, 石培礼, 等. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策[J]. 生态学报, 2020, 40(1): 295-309. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202001030.htm [21] 龚春梅, 白娟, 梁宗锁. 植物功能性状对全球气候变化的指示作用研究进展[J]. 西北植物学报, 2011, 31(11): 2355-2363. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201111040.htm [22] 陈永毕, 熊康宁, 池永宽. 我国南方喀斯特石漠化治理进展[J]. 江苏农业科学, 2019, 47(1): 17-21. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201901004.htm [23] 何鑫, 钟九生, 林双双, 等. 西南喀斯特地区耕地破碎化与石漠化空间格局及耦合关系研究[J]. 西南大学学报(自然科学版), 2022, 44(6): 160-170. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2022.06.017 [24] WANG G Z, LIU Y G, CUI M, et al. Effects of Secondary Succession on Soil Fungal and Bacterial Compositions and Diversities in a Karst Area[J]. Plant and Soil, 2022, 475(1-2): 91-102. doi: 10.1007/s11104-021-05016-6 [25] YANG Y, HOBBIE S E, HERNANDEZ R R, et al. Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth[J]. One Earth, 2020, 3(2): 176-186. doi: 10.1016/j.oneear.2020.07.019 [26] LI D J, WEN L, YANG L Q, et al. Dynamics of Soil Organic Carbon and Nitrogen Following Agricultural Abandonment in a Karst Region[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(1): 230-242. doi: 10.1002/2016JG003683 [27] GU M H, LIU S L, DUAN H C, et al. Dynamics of Community Biomass and Soil Nutrients in the Process of Vegetation Succession of Abandoned Farmland in the Loess Plateau[J]. Frontiers in Environmental Science, 2021, 9: 580775. doi: 10.3389/fenvs.2021.580775 [28] KARLOWSKY S, AUGUSTI A, INGRISCH J, et al. Land Use in Mountain Grasslands Alters Drought Response and Recovery of Carbon Allocation and Plant-Microbial Interactions[J]. The Journal of Ecology, 2018, 106(3): 1230-1243. doi: 10.1111/1365-2745.12910 [29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 降雨量等级: GB//T 28592-2012[S]. 北京: 中国标准出版社, 2012. [30] 陈敏玲, 张兵伟, 任婷婷, 等. 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 2016, 40(7): 658-668. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201607002.htm [31] 江蓝, 魏晨思, 何中声, 等. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB202203002.htm [32] ZHOU J H, CIERAAD E, VAN BODEGOM P M. Global Analysis of Trait-Trait Relationships within and between Species[J]. New Phytologist, 2022, 233(4): 1643-1656. doi: 10.1111/nph.17879 [33] SIEFERT A, VIOLLE C, CHALMANDRIER L, et al. A Global Meta-Analysis of the Relative Extent of Intraspecific Trait Variation in Plant Communities[J]. Ecology Letters, 2015, 18(12): 1406-1419. doi: 10.1111/ele.12508 [34] 祁建, 马克明, 张育新. 北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J]. 生态学报, 2008, 28(1): 122-128. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200801014.htm [35] LOZANO Y M, AGUILAR-TRIGUEROS C A, FLAIG I C, et al. Root Trait Responses to Drought are more Heterogeneous than Leaf Trait Responses[J]. Functional Ecology, 2020, 34(11): 2224-2235. [36] TUMBER-DÁVILA S J, SCHENK H J, DU E Z, et al. Plant Sizes and Shapes above and Belowground and Their Interactions with Climate[J]. The New Phytologist, 2022, 235(3): 1032-1056. [37] 何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201912001.htm [38] JIANG X Y, JIA X, GAO S J, et al. Plant Nutrient Contents rather than Physical Traits are Coordinated between Leaves and Roots in a Desert Shrubland[J]. Frontiers in Plant Science, 2021, 12: 734775. [39] MA Z Q, GUO D L, XU X L, et al. Evolutionary History Resolves Global Organization of Root Functional Traits[J]. Nature, 2018, 555(7694): 94-97. [40] 林艳华, 梁千慧, 刘锦春. 喀斯特地区适生树种复羽叶栾树幼苗对干旱胁迫下异质生境的生长和光合响应[J]. 西南大学学报(自然科学版), 2019, 41(8): 20-26. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.08.004 [41] LI L F, ZHENG Z Z, BIEDERMAN J A, et al. Ecological Responses to Heavy Rainfall Depend on Seasonal Timing and Multi-Year Recurrence[J]. The New Phytologist, 2019, 223(2): 647-660. [42] CAO J R, LIN L, PANG S, et al. Early Season Precipitation Accounts for the Variability of Fine-Root Traits in a Tibetan Alpine Grassland[J]. Environmental and Experimental Botany, 2020, 172: 103991.