-
开放科学(资源服务)标识码(OSID):
-
株高是水稻的重要农艺性状之一,也是构建理想株型的一个重要因素. 株高与水稻光合效率、抗倒伏以及产量有着密切的联系. 20世纪的绿色革命在矮化株型育种中取得了巨大成功,然培育兼顾产量和抗倒伏的适宜株高仍是水稻、玉米和小麦等大多数作物的首要育种目标,因此水稻株高的遗传及分子机制一直是研究的热点.
水稻株高主要由节间细胞的数目和大小决定. 节间细胞的增殖及扩张受多重因素的影响,包括植物激素、细胞周期、细胞壁合成、表观遗传学及转录因子等,同时也受到外界环境因素的影响,如光照、温度、物种间竞争等. 植物激素作为植物中重要的调节因子,参与植物的整个生长发育过程,其中赤霉素(GA)和油菜素内酯(BR)是水稻株高的重要决定因子[1-2]. SD1编码赤霉素生物合成的关键酶GA20ox,突变后导致GA20ox失活,造成株高降低[3-4]. EUI1编码细胞色素P450单加氧酶CYP714D1,eui1突变体及eui1 RNAi植株赤霉素含量升高,倒1节显著伸长,株高增加,而过表达植株中赤霉素含量降低,导致株高降低,因此EUI1负调控赤霉素介导的细胞伸长[5-6]. D35/OsKO2编码贝壳杉烯氧化酶,参与催化赤霉素生物合成的早期步骤,其功能缺失导致d35株高严重降低[7]. SLR1编码1个DELLA蛋白,是赤霉素信号传导的负调控因子,其功能是导致突变体株高降低. GID1编码1个可溶的赤霉素受体,类似于激素敏感脂肪酶,并且对具有生物活性的GAs具有高度的亲和性,GID1过量表达表现出GA高敏感性表型. GID1与SLR1相互作用,从而形成GID1-GA-SLR1复合体,阻止赤霉素信号向下传递[8-11].
油菜素内酯能够促进植物生长,在细胞伸长及分裂中也具有重要作用. BRD1,BRD2和D2均参与油菜素内酯的生物合成,分别编码C-6氧化酶、氧化还原酶和细胞色素P450,这些基因的突变导致油菜素内酯生物合成受阻,突变体中油菜素内酯含量降低,表现出严重矮化[12-14]. BRI1和BZR1参与油菜素内酯信号转导,分别编码油菜素内酯受体激酶和下游信号分子. bri1第2节不伸长,株高矮化,并且对外源油菜素内酯不敏感;BZR1能够调控下游油菜素内酯响应基因,干涉植株表现为矮杆[15-16].
过氧化物酶是一大类催化各种底物发生氧化的生物体保护酶类家族,在植物的生长发育中具有重要作用. 根据功能不同,将过氧化物酶分为3类:Ⅰ类(抗坏血酸)过氧化物酶、Ⅱ类(木质素)过氧化物酶和Ⅲ类(分泌型)过氧化物酶[17]. Ⅲ类过氧化物酶(CⅢ PRXs)广泛分布于植物界并且是植物中特有的一类过氧化物酶,参与植物激素分解代谢、木质素生物合成、种子萌发、细胞伸长和防御病原体等多种生物生理过程. CⅢ PRXs基因编码含血红素的酶,接受来自不同分子供体的电子,催化H2O2的代谢,产生活性氧(ROS,即OH-或O2-). 这些特性使得CⅢ PRXs能够在过氧化循环过程中调控损伤植物细胞的ROS产生[18]. CⅢ PRXs酶活性由ROS触发,ROS的产生由不同的环境刺激诱导,以抵御潜在的威胁[19].
Ⅲ类PRX家族较为庞大,在水稻和拟南芥中分别包含138个和73个成员,其中大部分的生物学功能并不清楚[20-21]. 拟南芥中研究表明过氧化物酶与植物生长呈负调控,AtPRX71通过在外质体中积累H2O2抑制细胞扩张,atprx71突变体莲座叶变大、生物量显著增加,而过表达植株生长缓慢莲座叶变小、生物量显著下降,并且AtPRX71表达水平的升高会促进ROS的积累导致细胞壁成分变化[22]. AtPRX37过表达植株生长迟缓,表现为矮化[23],因此AtPRX71和AtPRX37均是拟南芥生长的负调控因子. AtPRX72,AtPRX52和AtPRX4参与拟南芥木质素的生物合成,atprx72生长缓慢,叶片形态及角果数减少等. AtPRX52参与木质化过程中微管纤维的合成,突变体中木质素含量降低,木质素生物合成相关基因的表达下调[24-25]. OsPRX38在拟南芥中过表达后激活不同抗氧化系统信号网络,促进木质素生物合成,增强根部的木质化程度,导致过表达植株中砷积累减少[26]. AtPRX17调控木质化组织的形成,在营养生长向生殖生长的转变过程中受到AGL15的调控[27]. 在水稻中,OsPRX30通过调节过氧化物酶体(POD)的活性与ROS的含量来调节白叶枯病抗性,而OsPRX30的表达又受到含有AT-hook结构域的转录调节因子OsATH1的调控,进一步的研究揭示了OsATH1通过调节OsPRX30启动子区内的组蛋白H3乙酰化水平进而影响OsPRX30表达以调控白叶枯病抗性[28]. 目前为止,仅有少数Ⅲ类PRX基因生物学功能被揭示,还有大部分尚未报道,尤其在水稻中还未见Ⅲ类PRX基因参与调控株高的相关报道.
本研究通过CRISPR/Cas9基因编辑技术,在粳稻中花11背景下创制的Ⅲ类过氧化物酶家族敲除突变体库中鉴定到1个株高变高的突变体,将其命名为iph1(increaseing plant height 1). 与野生型相比,iph1的节明显变长,导致株高增加. 本研究通过表型分析、农艺性状考察、表达模式分析、过氧化物酶活性分析、亚细胞定位等对IPH1进行功能分析,探究IPH1在调控水稻株高发育及株型形态建成中的作用,为利用该基因进行水稻株型分子设计育种奠定基础.
The Class Ⅲ Peroxidase Gene IPH1 Regulates Plant Height in Rice
-
摘要:
过氧化物酶(peroxidase,PRX)是过氧化物酶体的标志酶,能够保护细胞免受氧化损伤和解除H2O2的毒害作用,还可以增强自然杀伤细胞的活性,调节细胞的增殖、分化和凋亡等. 其中Ⅲ类过氧化物酶(CⅢ PRXs)是植物中特有的过氧化物酶家族,通过清除活性氧(ROS)在植物免疫中发挥重要作用,然而CⅢ PRXs在水稻株型建立中的功能尚不清楚. 通过基因编辑技术CRISPR/Cas9获得CⅢ PRXs基因(LOC_Os12g09460)两种不同形式的敲除突变体iph1-1,iph1-2. iph1突变体的株高显著高于野生型,除倒1节节长(即第5节)外,其他节节长均显著或极显著长于野生型. 农艺性状考察表明,穗长及结实率等主要性状差异无统计学意义;通过RT-qPCR技术进行的表达模式分析表明,IPH1在根、茎、叶、鞘、穗中均表达,并在茎和鞘中表达相对较高;亚细胞定位分析表明,IPH1蛋白主要定位于过氧化物酶体中. 进一步通过生理分析,发现突变体中过氧化物酶活性显著降低,同时H2O2质量分数显著增加. 这些结果初步证实了IPH1能够通过过氧化氢途径调控水稻株高的形成,可为丰富株高调控网络提供有利的基因资源,进一步为株型相关生物育种奠定基础.
-
关键词:
- 水稻 /
- CRISPR/Cas9技术 /
- Ⅲ类过氧化物酶 /
- 株高
Abstract:Peroxidase (PRX) is a marker enzyme of peroxisome, which can protect cells from oxidative damage and relieve the toxic effect of H2O2. It can also enhance the activity of natural killer cells and regulate cell proliferation, differentiation and apoptosis. The class Ⅲ peroxidase (CⅢ PRXs) is a unique peroxidase family in plants, which plays an important role in plant immunity by scavenging reactive oxygen species (ROS). However, the function of CⅢ PRXs in the establishment of plant architecture remains unclear in rice. In this study, two different forms of knockout homozygous mutants iph1-1 and iph1-2 of CⅢ PRXs gene (LOC_Os12g09460) were obtained by CRISPR/Cas9. The plant height of the iph1 mutant was significantly higher than that of the wild type. Except for the length of the last internode, the lengths of other internodes were significantly or extremely significantly longer than that of the wild type. The investigation of agronomic traits showed that there were no significant differences in main traits such as panicle length and seed setting rate. The expression pattern analyzed by RT-qPCR showed that IPH1 was expressed in roots, stems, leaves, sheaths and panicles, and was relatively highly expressed in stems and sheaths. Subcellular localization analysis showed that IPH1 was mainly located in peroxisomes. Through further physiological analysis, it was found that the peroxidase activity in iph1 mutant was significantly reduced, while the H2O2 content was increased. These results preliminarily confirmed that IPH1 regulates the formation of plant height through the hydrogen peroxide pathway in rice, which can provide favorable gene resources for enriching the plant height regulation network and further lay a good foundation for plant architecture related biological breeding.
-
Key words:
- rice (Oryza sativa L.) /
- CRISPR/Cas9 /
- CⅢ PRXs /
- plant height .
-
表 1 引物序列
引物名称 序列(5′-3′) RT-IPH1-F GGGCCATATGGCGATCTATAAG RT-IPH1-R CAGGTGTGCAACGTAAATATGTG pAN580-IPH1-F AGTCCGGAGCTAGCTCTAGAATGCCCGCTCCAGCTCCACATAT pAN580-IPH1-R CTCACCATGGATCCCCCGGGCATGTTCATGATGAGTTCACTCGCCG ACTIN-F TGCTATGTACGTCGCCATCCAG ACTIN-R AATGAGTAACCACGCTCCGTCA -
[1] YAMAGUCHI S. Gibberellin Metabolism and its Regulation[J]. Annual Review of Plant Biology, 2008, 59: 225-251. [2] FUJIOKA S, SAKURAI A. Biosynthesis and Metabolism of Brassinosteroids[J]. Physiologia Plantarum, 1997, 100(3): 710-715. doi: 10.1111/j.1399-3054.1997.tb03078.x [3] SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. A Mutant Gibberellin-synthesis Gene in Rice[J]. Nature, 2002, 416(6882): 701-702. doi: 10.1038/416701a [4] MONNAL, KITAZAWAN, YOSHINOR, et al. Positional Cloning of Rice Semidwarfing Gene, Sd-1: Rice "Green Revolution Gene" Encodes a Mutant Enzyme Involved in Gibberellin Synthesis[J]. DNA Research, 2002, 9(1): 11-17. [5] ZHU Y Y, NOMURA T, XU Y H, et al. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenasethat Epoxidizes Gibberellins in a Novel Deactivation Reaction in Rice[J]. The Plant Cell, 2006, 18(2): 442-456. doi: 10.1105/tpc.105.038455 [6] LUO A D, QIAN Q, YIN H F, et al. EUI1, Encoding a Putative Cytochrome P450 Monooxygenase, Regulates Internode Elongation by Modulating Gibberellin Responses in Rice[J]. Plant and Cell Physiology, 2006, 47(2): 181-191. doi: 10.1093/pcp/pci233 [7] ITOH H, TATSUMI T, SAKAMOTO T, et al. A Rice Semi-dwarf Gene, Tan-ginbozu (D35), Encodes the Gibberellin Biosynthesis Enzyme, Ent-kaurene Oxidase[J]. Plant Molecular Biology, 2004, 54(4): 533-547. doi: 10.1023/B:PLAN.0000038261.21060.47 [8] UEGUCHI-TANAKA M, ASHIKARI M, NAKAJIMA M, et al. GIBBERELLIN INSENSITIVE DWARF1 Encodes a Soluble Receptor for Gibberellin[J]. Nature, 2005, 437(7059): 693-698. doi: 10.1038/nature04028 [9] UEGUCHI-TANAKA M, NAKAJIMA M, KATOH E, et al. Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin[J]. The Plant Cell, 2007, 19(7): 2140-2155. doi: 10.1105/tpc.106.043729 [10] ASANO K, HIRANO K, UEGUCHI-TANAKA M, et al. Isolation and Characterization of Dominant Dwarf Mutants, Slr1-d, in Rice[J]. Molecular Genetics and Genomics, 2009, 281(2): 223-231. doi: 10.1007/s00438-008-0406-6 [11] IKEDA A, UEGUCHI-TANAKA M, SONODA Y, et al. Slender rice, a Constitutive Gibberellin Response Mutant, is Caused by a Null Mutation of the SLR1 Gene, an Ortholog of the Height-Regulating Gene GAI/RGA/RHT/D8[J]. The Plant Cell, 2001, 13(5): 999-1010. doi: 10.1105/tpc.13.5.999 [12] MORI M, NOMURA T, OOKA H, et al. Isolation and Characterization of a Rice Dwarf Mutant with a Defect in Brassinosteroid Biosynthesis[J]. Plant Physiology, 2002, 130(3): 1152-1161. doi: 10.1104/pp.007179 [13] HONG Z, UEGUCHI-TANAKA M, FUJIOKA S, et al. The Rice Brassinosteroid-deficient Dwarf2 Mutant, Defective in the Rice Homolog of Arabidopsis DIMINUTO/DWARF1, is Rescued by the Endogenously Accumulated Alternative Bioactive Brassinosteroid, Dolichosterone[J]. The Plant Cell, 2005, 17(8): 2243-2254. doi: 10.1105/tpc.105.030973 [14] HONG Z, UEGUCHI-TANAKA M, UMEMURA K, et al. A Rice Brassinosteroid-deficient Mutant, Ebisudwarf (d2), is Caused by a Loss of Function of a New Member of Cytochrome P450[J]. The Plant Cell, 2003, 15(12): 2900-2910. doi: 10.1105/tpc.014712 [15] BAI M Y, ZHANG L Y, GAMPALA S S, et al. Functions of OsBZR1 and 14-3-3 Proteins in Brassinosteroid Signaling in Rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13839-13844. [16] YAMAMURO C, IHARA Y, WU X, et al. Loss of Function of a Rice Brassinosteroid Insensitive1 Homolog Prevents Internode Elongation and Bending of the Lamina Joint[J]. The Plant Cell, 2000, 12(9): 1591-1606. [17] BHATT I, TRIPATHI B N. Plant Peroxiredoxins: Catalytic Mechanisms, Functional Significance and Future Perspectives[J]. Biotechnology Advances, 2011, 29(6): 850-859. doi: 10.1016/j.biotechadv.2011.07.002 [18] ALMAGRO L, GÓMEZROS L V, BELCHI-NAVARRO S, et al. Class Ⅲ Peroxidases in Plant Defence Reactions[J]. Journal of Experimental Botany, 2009, 60(2): 377-390. doi: 10.1093/jxb/ern277 [19] HOSSAIN M A, BHATTACHARJEE S, ARMIN S M, et al. Hydrogen Peroxide Priming Modulates Abiotic Oxidative Stress Tolerance: Insights from ROS Detoxification and Scavenging[J]. Frontiers in Plant Science, 2015, 6(1): 420. [20] HIRAGAS, SASAKIK, ITOH, et al. A Large Family of Class Ⅲ Plant Peroxidases[J]. Plant and Cell Physiology, 2001, 42(5): 462-468. doi: 10.1093/pcp/pce061 [21] PASSARDI F, LONGET D, PENEL C, et al. The Class Ⅲ Peroxidase Multigenic Family in Rice and Its Evolution in Land Plants[J]. Phytochemistry, 2004, 65(13): 1879-1893. [22] RAGGI S, FERRARINI A, DELLEDONNE M, et al. The ArabidopsisThaliana Class Ⅲ Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage[J]. Plant Physiology, 2015, 169: 2513-2525. [23] PEDREIRA J, HERRERAMT, ZARRA I, et al. The Overexpression of AtPrx37, an Apoplastic Peroxidase, Reduces Growth in Arabidopsis[J]. Physiologia Plantarum, 2011, 141(2): 177-187. doi: 10.1111/j.1399-3054.2010.01427.x [24] FERNÁNDEZ-PÉREZF, POMAR F, PEDREÑO M A, et al. The Suppression of AtPrx52 Affects Fibers but not Xylem Lignification in Arabidopsis by Altering the Proportion of Syringyl Units[J]. Physiologia Plantarum, 2015, 154(3): 395-406. doi: 10.1111/ppl.12310 [25] HERRERO J, FERNÁNDEZ-PÉREZ F, YEBRA T, et al. Bioinformatic and Functional Characterization of the Basic Peroxidase 72 from Arabidopsis Thaliana Involved in Lignin Biosynthesis[J]. Planta, 2013, 237(6): 1599-1612. [26] KIDWAI M, DHAR Y V, GAUTAM N, et al. Oryza Sativa Class Ⅲ Peroxidase (OsPRX38) Overexpression in Arabidopsis Thaliana Reduces Arsenic Accumulation Due to Apoplastic Lignification[J]. Journal of Hazardous Materials, 2019, 362: 383-393. doi: 10.1016/j.jhazmat.2018.09.029 [27] COSIO C, RANOCHA P, FRANCOZ E, et al. The Class Ⅲ Peroxidase PRX17 is a Direct Target of the MADS-box Transcription Factor AGAMOUS-LIKE15 (AGL15) and Participates in Lignified Tissue Formation[J]. The New Phytologist, 2017, 213(1): 250-263. [28] 朱洪慧, 李映姿, 王成洋, 等. 水稻小粒突变体smg2的表型鉴定和候选基因分析[J]. 西南大学学报(自然科学版), 2023, 45(1): 2-11. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2023.01.001 [29] LIU H, DONG S Y, LI M, et al. The Class Ⅲ Peroxidase Gene OsPrx30, Transcriptionally Modulated by the AT-hook Protein OsATH1, Mediates Rice Bacterial Blight-induced ROS Accumulation[J]. Journal of Integrative Plant Biology, 2021, 63(2): 393-408. doi: 10.1111/jipb.13040 [30] CAI K Z, GAO D, LUO S M, et al. Physiological and Cytological Mechanisms of Silicon-induced Resistance in Rice Against Blast Disease[J]. PhysiologiaPlantarum, 2008, 134(2): 324-333. [31] KIM Y S, PARK S, KANG K, et al. Tyramine Accumulation in Rice Cells Caused a Dwarf Phenotype via Reduced Cell Division[J]. Planta, 2011, 233(2): 251-260. doi: 10.1007/s00425-010-1303-x [32] LUAN W J, LIU Y Q, ZHANG F X, et al. OsCD1 Encodes a Putative Member of the Cellulose Synthase-like D Sub-family and is Essential for Rice Plant Architecture and Growth[J]. Plant Biotechnology Journal, 2011, 9(4): 513-524. [33] ZHANG M, ZHANG B C, QIAN Q A, et al. Brittle Culm 12, a Dual-targeting Kinesin-4 Protein, Controls Cell-Cycle Progression and Wall Properties in Rice[J]. The Plant Journal, 2010, 63(2): 312-328. [34] BORRILL P, MAGO R, XU T Y, et al. An Autoactive NB-LRR Gene Causes Rht13 Dwarfism in Wheat[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(48): e2085092177.