-
开放科学(资源服务)标识码(OSID):
-
应激是机体在不良条件下做出的生理反应,根据应激持续时间长短可分为慢性应激和急性应激. 慢性应激是机体长时间受到不良因素刺激,打破机体原有稳态平衡后出现的一系列异常反应. 在畜禽养殖中慢性应激诱发机体功能紊乱,导致机体对营养物质的吸收和消化能力下降、饲料转化率降低和生长缓慢,从而造成动物经济效益降低,给养殖业带来不利影响.
机体营养物质吸收主要由小肠负责,食物在小肠的加工处理下大部分营养物质被吸收进入血液,运输至身体各部位,而大肠负责吸收剩余的水分和无机盐等微量物质[1]. 在生理条件下,肠屏障选择性参与保护身体免受外部环境病原体和有害成分渗透之间的正确平衡. 营养物质的选择性吸收是通过细胞间或跨细胞运输实现的,而有害物质和废物则通过粪便从胃肠道排出[2]. 肠道健康包括完整的绒毛结构和肠上皮屏障,发育良好的肠绒毛组织结构促进营养吸收[3]. 肠屏障的完整性部分是由一组完整的细胞蛋白、紧密连接复合物、细胞骨架微管和细丝赋予的,它们维持上皮细胞之间牢固的细胞连接,提供机械屏障保护机体,选择性通过对机体有利的物质[4-5]. 前人研究发现,慢性应激会破坏机体肠黏膜屏障,使肠黏膜屏障上皮细胞间紧密连接蛋白表达水平下降、黏膜上皮间杯状细胞数量减少、基底层细胞增殖变慢等[6]. Siddiqui等[7]研究发现在慢性应激下禽类肠道会发生损伤,小肠绒毛受损脱落、通透性增加. 与此同时,相关研究表明慢性应激也会致使机体炎症水平上升[8]. 在鸡慢性热应激和盲肠菌群结构研究中发现,养殖过程中产生的高密度、热应激、外伤、传染病及菌群结构变化等不可预知慢性条件长期刺激下,对畜禽健康及经济效益都有严重影响[9-11]. 已有研究表明,慢性不可预测应激导致肉鸡屏障功能破坏,表现为通透性增加、促炎细胞因子mRNA水平升高、紧密连接蛋白丰度降低和黏膜分泌型免疫球蛋白A(Secretory immunoglobulin A,sIgA)减少[12].
屏障受损会导致肠道渗漏,使管腔内的微生物产物和毒素侵入固有层甚至体循环,并激活炎症免疫反应,引起炎症性肠病(Inflammatory Bowel Disease,IBD)[13]. 肠黏膜是免疫的第一道屏障,防御病原菌在肠道黏附和定植[14]. 因此,保持肠道屏障完整性和维护肠屏障功能正常,对畜禽健康意义重大. 由于慢性应激致肠道屏障损伤机理仍不清楚,因此研究慢性应力损伤机理,寻找有效缓解措施尤为重要.
本研究以小鼠为研究对象,参考廖莎等[15]的实验构建慢性应激模型,通过组织化学染色、免疫组化和酶联免疫吸附技术(Enzyme-linked Immunosorbent Assay,ELISA)等技术,研究慢性应激对小鼠生长发育、激素水平、屏障损伤和自我更新等过程的影响,揭示畜禽养殖过程中慢性应激对机体产生的有害作用,阐明慢性应激对小肠屏障完整性破坏的机制,为养殖人员在养殖业中减少慢性应激,提高经济效益,实现健康养殖提供理论依据.
Studies on the Damage of the Small Intestinal Barrier in Mice by Chronic Restraint Stress
-
摘要:
肠屏障由机械屏障、免疫屏障、化学屏障和生物屏障共同组成,在维持肠腔内环境稳态和肠上皮结构完整性等方面发挥重要作用. 首先建构小鼠慢性束缚应激模型并进行血浆激素水平检测和小鼠旷场实验,验证模型是否建构成功. 随后通过常规组织学染色、免疫组化、TUNEL免疫荧光、ELISA等方法研究慢性束缚应激对小鼠小肠的损伤作用. 结果显示,慢性束缚应激显著提高小鼠血浆NE和CORT水平(p<0.05),降低小鼠小肠绒毛高度(V,p<0.05)、增加隐窝深度(C,p<0.05),降低V/C比值(p<0.05)及紧密连接蛋白ZO-1表达量(p<0.01);显著减少小肠杯状细胞和内皮单核淋巴细胞数量(p<0.01),提示慢性束缚应激造成了小鼠肠道损伤和免疫功能抑制. 进一步研究发现,慢性应激小鼠肠道内PCNA阳性表达显著减少(p<0.01)、凋亡细胞显著增多(p<0.01);血浆中TNF-α,IL-1β,IL-18含量显著升高(p<0.01),而IL-10显著降低(p<0.01). 血浆氧化-抗氧化指标结果显示,慢性束缚应激显著增加小鼠血浆MDA含量(p<0.05),降低T-AOC,SOD,CAT,GSH-Px(p<0.05)活性,提示慢性束缚应激诱导机体氧化应激. 该研究表明慢性束缚应激通过引发机体氧化应激,造成肠上皮细胞更新抑制和肠道屏障结构损伤,加重机体炎症反应.
Abstract:The gut barrier consists of mechanical, immune, chemical and biological barriers, which plays an important role in maintaining the homeostasis of the intestinal lumen and the integrity of the intestinal epithelium. Firstly, hormone level tests and open field test were used to verify whether the mouse chronic restraint stress model was constructed successfully. Subsequently, conventional histological staining, immunohistochemistry, TUNEL immunofluorescence and ELISA were used to investigated the effects of chronic restraint stress on mice gut barrier. Our results showed that compared with the control group, chronic restraint stress significantly increased plasma NE and CORT levels (p < 0.05), decreased the height of small intestinal villi (V, p < 0.05), increased the depth of crypts (C, p < 0.05), and decreased the V/C ratio (p < 0.05), the positive expression of the tight junction protein ZO-1 (p < 0.01), the number of small intestinal goblet cell and endothelial mononuclear lymphocytes (p < 0.01), suggesting that chronic restraint stress caused intestinal damage and immune suppression in mice. Further studies revealed that chronic stress significantly decreased PCNA positive expression (p < 0.01), while increased apoptotic cells numbers (p < 0.01) in the small intestine. The plasma levels of TNF-α, IL-1β, and IL-18 were significantly increased (p < 0.01), while IL-10 was significantly decreased (p < 0.01) than that of control group. In addition, the results of plasma oxidation-antioxidant indexes showed that chronic restraint stress significantly increased MDA content (p < 0.05) and decreased T-AOC, SOD, CAT and GSH-Px levels (p < 0.05) in mice. This study demonstrated that chronic restraint stress can inhibit cell proliferation and damage the intestinal mucosal barrier function, aggravate inflammatory reactions by inducing oxidative stress in mice.
-
Key words:
- mice /
- chronic restraint stress /
- mechanical barriers /
- inflammatory reactions .
-
[1] SUZUKI T. Regulation of the Intestinal Barrier by Nutrients: The Role of Tight Junctions[J]. Animal Science Journal, 2020, 91(1): e13357. doi: 10.1111/asj.13357 [2] DI VINCENZO F, DELGAUDIO A, PETITO V, et al. Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: a Narrative Review[J]. Internaland Emergency Medicine, Doi: 10.1007/S11739-023-03374-W. [3] WANG H S, NI X Q, QING X D, et al. Probiotic Enhanced Intestinal Immunity in Broilers Against Subclinical Necrotic Enteritis[J]. Frontiersin Immunology, 2017, 8: 1592. doi: 10.3389/fimmu.2017.01592 [4] 王超然. 基于TGF-β1/P38通路探究慢性束缚应激致大鼠回肠损伤的作用机制[D]. 哈尔滨: 东北农业大学, 2020. [5] 魏萍, 耿天颖, 王琦, 等. 食淀粉乳杆菌联合芦丁干预PoRV感染后肠道紧密连接蛋白及其相关因子变化[J]. 东北农业大学学报, 2023, 54(3): 43-50. [6] 周红艳. 慢性束缚应激对WIRS致急性胃黏膜损伤及其愈合的影响[D]. 广州: 南方医科大学, 2015. [7] SIDDIQUI S H, KANG D, PARK J, et al. Chronic Heat Stress Regulates the Relation between Heat Shock Protein and Immunity in Broiler Small Intestine[J]. ScientificReports, 2020, 10: 18872. [8] 白玉. 慢性心理应激和疼痛应激对小肠屏障功能的影响[D]. 杭州: 浙江理工大学, 2020. [9] 殷斌, 隽昌宁, 秦雨, 等. 基于系统生物学分析探究热应激诱导鸡肠道损伤的作用机制[J]. 南方农业学报, 2023, 54(4): 969-981. doi: 10.3969/j.issn.2095-1191.2023.04.001 [10] 付文娟, 刘志伟, 黎茵, 等. 间型脉孢菌固体发酵产孢条件优化及其培养物对三黄鸡盲肠菌群结构的影响[J]. 东北农业大学学报, 2023, 54(3): 35-42. [11] HE X F, LU Z A, MA BB, et al. Chronic Heat Stress Damages Small Intestinal Epithelium Cells Associated with the Adenosine 5'-Monophosphate-Activated Protein Kinase Pathway in Broilers[J]. Journalof Agricultural and Food Chemistry, 2018, 66(28): 7301-7309. doi: 10.1021/acs.jafc.8b02145 [12] YUE Y S, GUO Y M, YANG Y. Effects of Dietary L-Tryptophan Supplementation on Intestinal Response to Chronic Unpredictable Stress in Broilers[J]. Amino Acids, 2017, 49(7): 1227-1236. doi: 10.1007/s00726-017-2424-3 [13] RAO J J, XIE R N, LIN L, et al. Fecal MicrobiotaTransplantation Ameliorates Gut MicrobiotaImbalance and Intestinal Barrier Damage in Rats with Stress-Induced Depressive-Like Behavior[J]. TheEuropeanJournal of Neuroscience, 2021, 53(11): 3598-3611. [14] WU Y P, TANG L, WANG B K, et al. The Role of Autophagy in Maintaining Intestinal Mucosal Barrier[J]. JournalofCellular Physiology, 2019, 234(11): 19406-19419. [15] 廖莎, 周佳, 平锋锋, 等. 慢性束缚与慢性不可预期温和应激抑郁模型小鼠的行为学比较及其发生机制研究[J]. 西北农林科技大学学报(自然科学版), 2012, 40(11): 29-34, 41. [16] 岳云双. 色氨酸调节慢性不可预知应激动物肠道屏障及免疫功能的机制研究[D]. 北京: 中国农业大学, 2017. [17] 徐小英, 胡慧美, 尹秋雄, 等. 水浸束缚应激模型在小鼠结肠损伤研究中的探索与实践[J]. 中国实验动物学报, 2023, 31(4): 492-500. [18] 沈霞芬, 卿素珠. 家畜组织学与胚胎学[M]. 5版. 北京: 中国农业出版社, 2015. [19] 张淑芳. 慢性束缚应激对DSS诱导的小鼠溃疡性结肠炎发病及病情的影响[D]. 长沙: 中南大学, 2007. [20] Jarillo-Luna A, Rivera-Aguilar V. Effect of Restraint Stress on the Population of Intestinal Intraepithelial Lymphocytes in Mice[J]. Brain BehavImmun, 2008, 22(2): 265-275. [21] LIU Y, ZHANG S, LUO Z, et al. Supplemental Bacillus subtilis PB6 Improves Growth Performance and Gut Health in Broilers Challenged with Clostridium perfringens[J]. JournalofImmunology Research, 2021, 2021: 2549541. [22] DEL CARMEN MARTÍNEZ-SÁNCHEZ L, NGO P A, PRADHAN R, et al. Epithelial RAC1-Dependent Cytoskeleton Dynamics Controls Cell Mechanics, Cell Shedding and Barrier Integrity in Intestinal Inflammation[J]. Gut, 2023, 72(2): 275-294. doi: 10.1136/gutjnl-2021-325520 [23] ALMOUSA A A, MEURENS F, KROL ES, et al. Linoorbitides and Enterolactone Mitigate Inflammation-Induced Oxidative Stress and Loss of Intestinal Epithelial Barrier Integrity[J]. International Immunopharmacology, 2018, 64: 42-51. [24] ZHOU W J, SHI G C, BAI J J, et al. Colquhounia Root Tablet Protects Rat Pulmonary Microvascular Endothelial Cells Against TNF-α-Induced Injury by Upregulating the Expression of Tight Junction Proteins Claudin-5 and ZO-1[J]. Evidence-Based Complementary and Alternative Medicine, 2018, 2018: 1-11. [25] ZHAO Y A, WANG C R, YANG T Y, et al. Chlorogenic Acid Alleviates Chronic Stress-Induced Intestinal Damage by Inhibiting the P38MAPK/NF-κB Pathway[J]. Journalof Agricultural and Food Chemistry, 2023, 71(24): 9381-9390. [26] SONG A Q, GAO B, FAN J J, et al. NLRP1 InflammasomeContributes to Chronic Stress-Induced Depressive-Like Behaviors in Mice[J]. Journal ofNeuroinflammation, 2020, 17(1): 178. [27] NOWARSKI R, JACKSON R, GAGLIANI N, et al. Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis[J]. Cell, 2015, 163(6): 1444-1456. [28] KOH S J, KIM J W, KIM B G, et al. Restraint Stress Induces and Exacerbates Intestinal Inflammation in Interleukin-10 Deficient Mice[J]. World Journalof Gastroenterology, 2015, 21(28): 8580-8587. [29] JONES D P. Redefining Oxidative Stress[J]. Antioxidants & Redox Signaling, 2006, 8(9/10): 1865-1879. [30] ALINAGHIPOUR A, SALAMI M, RIAHI E, et al. Protective Effects of Nanocurcumin Against Stress-Induced Deterioration in the Intestine[J]. Stress, 2022, 25(1): 337-346. [31] WAN Y, FU Y Q, WANG F L, et al. Protective Effects of a Lipid Extract from Hard-Shelled Mussel (MytilusCoruscus) on Intestinal Integrity after Lipopolysaccharide Challenge in Mice[J]. Nutrients, 2018, 10(7): 860. [32] doi: http://eurekamag.com/pdf.php?pdf=008703576 SIVAN E, LEE Y C, WU Y K, et al. Free Radical Scavenging Enzymes in Fetal Dysmorphogenesis among Offspring of Diabetic Rats[J]. Teratology, 1997, 56(6): 343-349. [33] BARTSCH H, NAIR J. Accumulation of Lipid Peroxidation-Derived DNA Lesions: Potential Lead Markers for Chemoprevention of Inflammation-Driven Malignancies[J]. Fundamentaland Molecular Mechanisms of Mutagenesis, 2005, 591(1/2): 34-44.