-
开放科学(资源服务)标识码(OSID):
-
叶片是植物的重要器官,可通过光合作用为植株提供大量的能量和有机物,以保证其正常生长发育. 叶片衰老作为叶片自然发育的必经阶段,由外部信号和内部信号引起,是一个高度程序化的过程[1]. 该过程中细胞结构、基因表达和细胞代谢有序变化,最初为叶绿体的破裂,接着叶绿素、蛋白质、膜脂、RNA等有机大分子开始分解并向种子或者生长点转移. 该过程还受植物激素、一些代谢物的内源性因素以及光合作用状态等调控[2-4]. 叶片衰老作为植物发育过程中的重要环节,研究叶片衰老在发育生物学中具有积极的意义[5].
水稻是单子叶重要的模式植物,更是人类最重要的粮食作物之一,其增产对世界的粮食安全具有重要意义[6-7]. 籼型品种在中后期叶片易早衰,导致光合能力降低,限制了更多有机物的形成和积累,不利于结实率和千粒质量等产量相关性状的提高[8]. 叶片早衰是指水稻抽穗期至成熟期,叶片内部生理功能失调,生理活动受到限制,导致“未老先衰”的表型,出现茎叶枯萎、失绿及根系活性减弱等症状,致使源器官有机物合成不充足,籽粒不充实,空秕率迅速上升,千粒质量下降,对水稻产量及米质造成极大的损失和影响[9]. 在粮食生产中,水稻叶片早衰现象广泛存在. 有些水稻品种由于叶片和根系早衰而造成结实率偏低、空秕率较高,影响其产量潜力的发挥. 理论上推算,水稻叶片如果推迟1d衰老,可使水稻增产2%左右,而实验结果表明可增产约1%[10]. 有目的地对叶片早衰进行调控,可以提高农作物的产量或延长农产品的贮藏期,因此,开展水稻叶片早衰相关突变体的表型鉴定,以及叶片衰老的生理生化指标检测和基因克隆研究对其在水稻的遗传改良和衰老机制解析等方面具有重要意义.
叶片衰老过程中表达水平发生变化的基因称为叶片衰老相关基因(senescence-associated genes,SAGs). 目前,关于叶片早衰的机理研究较为深入,大多集中在分子和遗传水平上,已有ESL9,OsDOS,OsPLS1,SPL28等20多个调控水稻SAGs完成了基因定位和部分功能解析[11]. 根据早衰突变体表型可分为两种类型:第一个类型是叶片黄化,早衰突变体esl9分蘖期叶尖开始黄化,逐渐延伸至叶片中段,一直持续到成熟期,其调控基因位于第11染色体,引起叶片淀粉积累,使光合系统受阻[12]. OsDOS RNAi植株在孕穗期时叶片开始发黄,灌浆期时叶片明显发黄,OsDOS可能通过或部分通过将发育信号与茉莉酸甲酯信号传导通路进行整合来延缓叶片的衰老[13]. OsAkaGal的过表达植株表现为生长发育延迟且叶片变得灰绿,OsAkaGal是一个类囊体膜降解酶,在水稻叶衰老过程中通过参与双半乳糖甘油二脂的降解从而调控水稻叶片衰老[14-15]. 第二个类型是叶片斑点,早衰突变体ospls1分蘖期下部叶片出现类病斑症状,由叶尖和叶缘扩展至叶片内侧,其调控基因OsPLS1通过参与SA代谢途径引起叶片衰老[9]. SPL28编码1个网格相关受体蛋白复合体亚基(AP1M1),参与调控高尔基体的物质运输途径和囊泡运输,功能缺陷造成水稻过敏性反应,叶片表现出类病斑,导致植株早衰[16]. 突变体rls1早衰的叶片在整个表面形成一些散布的、类似感病的黄棕色小斑点,RLS1编码1个具有NB-ARM结构域的蛋白,参与叶绿体的降解,引发叶片快速衰老[17]. 叶片衰老是一个复杂的过程,尽管部分水稻叶片衰老基因被定位和克隆,但在蛋白合成降解、细胞程序性死亡、激素信号转导等阶段还缺乏系统的认知,需挖掘更多叶片早衰的调控基因,不断丰富叶片早衰的调控网络,为水稻抗早衰品种选育提供坚实的理论基础.
本研究从涪恢9802和LR杂交后代中鉴定了早衰突变体psl4(t),并对该叶片早衰基因进行表型分析和基因定位. 该突变体在6叶期前叶片呈正常绿色,从7叶至剑叶每张叶片从叶尖至叶中部逐渐衰老,其早衰调控候选基因定位于第4染色体上,与已报道的早衰基因位点均为非等位,是一个新的早衰基因. 本研究对该水稻早衰基因的克隆、功能分析及分子调控机理的研究奠定了基础.
Phenotypic Characterization and Gene Mapping of a Presenescing Leaf Mutant psl4(t) in Rice (Oryza sativa L.)
-
摘要:
水稻叶片早衰严重影响水稻的产量与品质,挖掘水稻叶片早衰相关基因并解析其分子机制,对提高水稻产量具有重要意义. 从涪恢9802和LR杂交后代中筛选到叶早衰突变体psl4(t),该突变体6叶期前叶片呈正常绿色,从7叶期至剑叶(倒1叶)期每张叶片均是从叶尖至叶中部逐渐衰老,叶片的叶绿体发育受阻其体积变小、光合色素质量分数减少,叶片提前衰老. 农艺性状分析结果表明:与野生型相比,突变体psl4(t)的穗长、有效分蘖数和籽粒宽变化无统计学意义,而株高、每穗粒数、结实率及千粒质量显著降低. 遗传分析结果发现:突变体psl4(t)的早衰性状受单隐性核基因控制,利用分子标记将目标基因定位于第4染色体长臂端两个SSR标记(RM17004和RM17006)之间38.5 kb的范围内. 研究为psl4(t)基因的克隆及功能解析、早衰分子机制研究奠定基础.
-
关键词:
- 水稻 /
- 早衰突变体psl4(t) /
- 遗传分析 /
- 基因定位
Abstract:Early leaf senescence greatly affects grain yield and quality in rice. It is of great significance to mine genes related to rice leaf premature senescence and analyze their molecular mechanisms to improve rice yield. A presenescing leaf mutant psl4(t) was obtained from the hybrid offspring of Fuhui9802 and LR in this study. The psl4(t) mutant exhibited a normal phenotype up to the L6 stage. Nevertheless, from seventh leaf to flag leaf, each leaf gradually senesced from leaf tip to middle of leaf. The chloroplast development of leaves was inhibited, the size of chloroplasts became smaller, the content of photosynthetic pigments decreased, which leads to the advanced leaf senescence. The results of agronomic trait analysis showed that compared with the wild type, the psl4(t) mutant had no significant changes in panicle length, effective tiller number and seed width, while plant height, grain number per panicle, seed setting rate and thousand kernel weight significantly reduced. Genetic analysis revealed that the premature senescence trait of psl4(t) mutant was controlled by a single recessive gene. The target gene was mapped in a 38.5 kb region on chromosome 4 between marker RM17004 and RM17006 through gene mapping. This study provides a basis for psl4(t) gene cloning and functional analysis, and molecular mechanism of premature leaf senescence.
-
Key words:
- rice(Oryza sativa L.) /
- psl4(t) /
- genetic analysis /
- gene mapping .
-
表 1 psl4(t)基因连锁标记
标记 正向引物(5′→3′) 反向引物(5′→3′) RM1155 AGGGAGTGTGGCAACTATGC GGGAGGAGTGAGAAGGGATC RM3524 CGGAGCTGGTCTAGCCATC GTCTCCGTCTTCCTCACTCG RM3708 GCGTAAGACGACGAGACCTTACC TGATGACGTGGCTTTCATTTGG RM16999 GCTGATGCGGAACAAGGAGACC GATCAGATCACCACCCGAATGAGC RM17004 GTTATGCCTGGTCCCGTCTGACC TCTTGACGTACACGCTGATGATGC RM17006 AGTCGACGAAGAGGTAGTCGATGG CTCCTCCTGCTGCTCTCCTTCC RM5742 GATCCTCAAACGGCCTCTGC CCTTCAAAGTTTACTCACGCTCTGC RM6130 AAGCGGCTTCAGCACAAGATGAGC GTAGAGCTTCATCAGCTCGTCGATGG RM142 CTCGCTATCGCCATCGCCATCG TCGAGCCATCGCTGGATGGAGG 表 2 野生型(WT)与突变体psl4(t)的主要农艺性状分析
材料 株高/cm 有效穗 穗长 每穗粒数 每穗实粒数 结实率/% 千粒质量/g 籽粒长/mm 籽粒宽/mm WT 118.64±4.12 12.43±1.61 23.28±1.21 176.56±6.49 143.92±4.42 81.51±1.46 25.65±0.50 9.37±0.28 2.89±0.08 psl4(t) 108.57±4.36** 11.58±1.52 23.24±0.98 153.76±9.78** 115.64±6.95** 72.21±1.72** 22.85±0.42** 9.12±0.25* 2.79±0.12 注:*表示p<0.05,**表示p<0.01,差异有统计学意义. 表 3 水稻早衰突变体psl4(t)与0739NB,431B和中九B杂交F2代的表型分离比
杂交组合 世代 正常株 早衰突变株 总数 X2(3∶1) psl4(t)/0739NB F2 310 102 412 0.001(3∶1) psl4(t)/431B F2 135 43 178 0.060(3∶1) psl4(t)/中九B F2 5 194 1 656 6 850 2.490(3∶1) 表 4 定位区间内的候选基因及功能注释
基因 功能注释 基因 功能注释 LOC_Os04g35260 DEAD/DEAH盒解旋酶结构域 LOC_Os04g35300 SLL1假定蛋白 LOC_Os04g35270 α-1,4-聚焦转移酶假定蛋白 LOC_Os04g35305 四肽状螺旋状结构域 LOC_Os04g35280 中性/碱性转化酶 LOC_Os04g35310 Meprin和TRAF同源MATH结构域 LOC_Os04g35290 蛋白质二硫键异构酶前体 -
[1] GUO Y F, GAN S S. Convergence and Divergence in Gene Expression Profiles Induced by Leaf Senescence and 27 Senescence-Promoting Hormonal, Pathological and Environmental Stress Treatments[J]. Plant, Cell & Environment, 2012, 35(3): 644-655. [2] MOORE B, ZHOU L, ROLLAND F, et al. Role of the Arabidopsis Glucose Sensor HXK1 in Nutrient, Light, and Hormonal Signaling[J]. Science, 2003, 300(5617): 332-336. doi: 10.1126/science.1080585 [3] SAKURABA Y, BALAZADEH S, TANAKA R, et al. Overproduction of Chl b Retards Senescence through Transcriptional Reprogramming in Arabidopsis[J]. Plant and Cell Physiology, 2012, 53(3): 505-517. doi: 10.1093/pcp/pcs006 [4] KUSABA M, TANAKA A, TANAKA R. Stay-Green Plants: What do they Tell us about the Molecular Mechanism of Leaf Senescence[J]. Photosynthesis Research, 2013, 117(1): 221-234. [5] 李晴, 朱玉贤. 植物衰老的研究进展及其在分子育种中的应用[J]. 分子植物育种, 2003, 1(3): 289-296. [6] 杨正林, 赵芳明, 钟秉强, 等. 不同遗传背景下杂交水稻产量性状的遗传分析[J]. 西南大学学报(自然科学版), 2008, 30(12): 5. doi: http://xbgjxt.swu.edu.cn/article/id/jsunsxnnydxxb200812012 [7] 朱洪慧, 李映姿, 王成洋, 等. 水稻小粒突变体smg2的表型鉴定和候选基因分析[J]. 西南大学学报(自然科学版), 2023, 45(1): 2-11. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2023.01.001 [8] 李付振. 一个水稻早衰突变体pse(t)的遗传分析、定位及生理学研究[D]. 杭州: 浙江大学, 2005. [9] ZHOU Y, HUANG W F, LIU L, et al. Identification and Functional Characterization of a Rice NAC Gene Involved in the Regulation of Leaf Senescence[J]. BMC Plant Biology, 2013, 13: 132-132. [10] 段俊, 梁承邺, 黄毓文. 杂交水稻开花结实期间叶片衰老[J]. 植物生理学报, 1997(2): 139-144. [11] 李可, 禹晴, 徐云姬, 等. 水稻叶片早衰突变体的农艺与生理性状研究进展[J]. 中国水稻科学, 2020, 34(2): 104-114. [12] 肖艳华. 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位[D]. 重庆: 西南大学, 2023. [13] KONG Z S, LI M N, YANG W Q, et al. A Novel Nuclear-Localized CCCH-Type Zinc Finger Protein, OsDOS, is Involved in Delaying Leaf Senescence in Rice[J]. Plant Physiology, 2006, 141(4): 1376-1388. [14] LEE R H, LIN M C, CHEN S C. A Novel Alkaline α-galactosidase Gene is Involved in Rice Leaf Senescence[J]. Plant Molecular Biology, 2004, 55(2): 281-295. doi: 10.1007/s11103-004-0641-0 [15] LEE R H, HSU J H, HUANG H J, et al. Alkaline α-galactosidase Degrades Thylakoid Membranes in the Chloroplast during Leaf Senescence in Rice[J]. New Phytologist, 2009, 184(3): 596-606. doi: 10.1111/j.1469-8137.2009.02999.x [16] QIAO Y L, JIANG W Z, LEE J, et al. SPL28 Encodes a Clathrin-Associated Adaptor Protein Complex 1, Medium Subunit Μ1 (AP1M1) and is Responsible for Spotted Leaf and Early Senescence in Rice (Oryza sativa)[J]. New Phytologist, 2010, 185(1): 258-274. doi: 10.1111/j.1469-8137.2009.03047.x [17] JIAO B B, WANG J J, ZHU X D, et al. A Novel Protein RLS1 with NB-ARM Domains is Involved in Chloroplast Degradation during Leaf Senescence in Rice[J]. Molecular Plant, 2012, 5(1): 205-217. [18] WELLBURN A R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2 [19] 王致远, 刘子文, 谷晗, 等. 水稻白条纹叶突变体wsl7的表型鉴定及候选基因分析[J]. 南京农业大学学报, 2019, 42(1): 21-29. [20] HE R F. Study on Leaf Ultrastructure of the Thermo-Sensitive Chlorophyll Deficient Mutant in Rice[J]. J Wuhan Bot Res, 2001, 19: (1) 1-5. [21] 王晓雯, 苗润隆, 蒋钰东, 等. 水稻穗颈极度缩短突变体sui(t)的遗传分析与基因定位[J]. 西南大学学报(自然科学版), 2013, 35(5): 1-6. doi: http://xbgjxt.swu.edu.cn/article/id/jsuns201305001 [22] MICHELMORE R W, PARAN I, KESSELI R V. Identification of Markers Linked to Disease-resistance Genes by Bulked Segregant Analysis: a Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832. [23] 王军, 吴书俊, 周勇, 等. 水稻早衰叶突变体基因psl1的遗传分析和精细定位[J]. 科学通报, 2006, 51(20): 2387-2392. [24] 方立魁, 李云峰, 龚小平, 等. 水稻叶片显性早衰突变体psl3的遗传分析与基因精细定位[J]. 科学通报, 2010, 55(17): 1676-1681. [25] LI F Z, HU G C, FU Y P, et al. Genetic Analysis and High-resolution Mapping of a Premature Senescence gene Pse(t) in Rice (Oryza sativa L. )[J]. Genome, 2005, 48(4): 738-746. [26] KUSABA M, ITO H, MORITA R, et al. Rice NON-YELLOW COLORING1 is Involved in Light-Harvesting Complex Ⅱ and Grana Degradation during Leaf Senescence[J]. The Plant Cell, 2007, 19(4): 1362-1375. [27] ZHAO C Y, LIU C L, ZHANG Y, et al. A 3-Bp Deletion of WLS5 Gene Leads to Weak Growth and Early Leaf Senescence in Rice[J]. Rice, 2019, 12(1): 26. [28] FANG C Y, ZHANG H, WAN J, et al. Control of Leaf Senescence by an MeOH-jasmonates Cascade that is Epigenetically Regulated by OsSRT1 in Rice[J]. Molecular Plant, 2016, 9(10): 1366-1378.