关于不定方程 x3±8=19 y2
- 西南大学数学与统计学院,重庆400715; 和田师范专科学校数学系,新疆和田848000 ; 西南大学数学与统计学院,重庆,400715
摘要: With the elementary method of Pell equation ,recurrent sequence ,congruent formula ,quadratic residue ,and Jacobi symbol ,it has proved that the Diophantine equation x3 +8=19y2 has only the integer solutions of (-2 ,0) ,(62 ,± 112) ,and the Diophantine equation x3 -8=19y2 has only the integer solu‐tions of (x ,y)= (2 ,0) ,(3 , ± 1) ,(14 , ± 12) .In the process of proving the conclusion ,the authors cor‐rected the conclusion that the Diophantine equation x3 -1=38 y2 has only the integer solutions of (x ,y)=(1 ,0) ,and then prove all integer solutions of x3 -1=38y2 are (x ,y)= (1 ,0) ,(7 ± 3) .
On the Diophantine Equation x3 ± 8=19 y2
- 西南大学数学与统计学院,重庆400715; 和田师范专科学校数学系,新疆和田848000 ; 西南大学数学与统计学院,重庆,400715
Abstract: 不定方程; 整数解; 递归序列