-
非线性分析中的许多问题都可以通过一些子集族的非空交来解决,文献[1]的KKM引理给出了集合族非空交性质这一重要结论,随后得到了推广[2-23].
空间的凸性在KKM理论中起着十分重要的作用,利用公理化方法建立凸空间理论以及非线性分析相应结果的推广成为一个热门研究领域,产生了很多重要成果[4-25]. 文献[26]引入度量空间中的超凸概念之后,在超凸度量空间中得到了KKM引理以及非线性分析中许多重要结果.
本文将在不具线性结构的抽象凸度量空间中建立一个广义KKM定理,并进一步得到最佳邻近点存在定理,该定理作为Brouwer不动点定理和Fan-Browder不动点定理对非自映射在抽象凸度量空间中的推广.
全文HTML
-
设(X, d)是度量空间,X的一切子集构成的集族记为2X, X的一切非空有限子集构成的集族记为〈X〉, 对任意A∈〈X〉的元素个数记为|A|. 下面介绍最佳邻近点问题[29].
设A是度量空间(X, d)的非空子集,映射f:
$A \longrightarrow X$ 有不动点x∈A, 即满足f(x)=x, 等价地,可描述为d(x, f(x))=0. 所以若f在A上有不动点,则f(A)∩A≠Ø. 但是反之未必成立. 显然如果不动点方程f(x)=x无解,则对任意x∈A, 都有d(x, f(x)) > 0. 此时求解使得d(x, f(x))最小的点x∈A的问题称为最佳邻近点问题,也就是一个极小化优化问题,即求解$\min\limits_{x \in A} d(x, f(x))$ . 一般地,设A, B是度量空间(X, d)的两个非空子集,映射f:$A \longrightarrow B$ 决定了一个最佳邻近点问题是求x*∈A, 使得d(x*, f(x*))=$\min\limits_{x \in A} d(x, f(x))$ , 等价地,可以描述为d(x*, f(x*))=d(A, B). 特别地,当d(A, B)=0时,x*∈A为f在A上的不动点. 本文将研究抽象凸度量空间(X, d)的两个非空邻近对子集A, B之间的集值映射F:$A \longrightarrow 2^{B}$ 决定的最佳邻近点问题:求x*∈A, 使得d(x*, F(x*))=d(A, B).定义1 若度量空间(X, d)的子集族C⊂2X满足条件:
① Ø, X∈C;
② 对任意子集族D⊂C, 都有∩A∈DA⊂C;
③ 对任意A∈C, ε > 0, 都有{x∈X: d(x, A) < ε}∈C, 则称度量空间(X, d)为抽象凸度量空间,记为(X, d, C); 则C称为度量空间(X, d)上的一个抽象凸结构,C中的元称为抽象凸集.
注1 对可缩集代替线性凸集的情形,文献[6-7]将抽象凸度量空间称之为l.c.空间. 当且仅当coCA=A时,任意A⊂X为抽象凸集,其中coCA=∩A⊂B{B: B∈C} 表示集合A⊂X的抽象凸包.
定义2 如果对任意A={x0, x1, …, xn}∈〈X〉, 存在连续映射f: ΔN→coCA(其中N={0, 1, …, n}), 使得对任意J⊂N, 都有f(ΔJ)⊂coC{xj: j∈J}成立. 其中ΔN表示n+1维欧氏空间中的标准n单纯形. 此时称抽象凸度量空间(X, d, C)满足H0条件,或称(X, d, C)为满足H0条件的抽象凸度量空间.
-
定义3 设P, Q是抽象凸度量空间(X, d, C)的两非空子集,如果对任意(x, y)∈P×Q, 都存在(x′, y′)∈P×Q, 使得d(x, y′)=d(x′, y)=d(P, Q)成立,则称(P, Q)为邻近对. 进而若P, Q还是抽象凸集,则称(P, Q)为抽象凸邻近对.
定义4 设P, Q是抽象凸度量空间(X, d, C)的两非空子集,且(P, Q)为邻近对,称非自映射F:
$P \longrightarrow 2^{Q}$ 是R-KKM映射,如果对任意{x0, x1, …, xn}∈〈P〉, 都存在{y0, y1, …, yn}∈〈Q〉满足条件:使得对任意非空子集J⊂N都有:coC{yj: j∈J}⊂F({xj: j∈J}).
注2 R-KKM映射的名称沿用自文献[29]. 显然当映射F:
$P \longrightarrow 2^{Q}$ 是R-KKM映射时,对任意x∈P, 都有d(x, F(x))=d(P, Q), 而且当P=Q时,R-KKM映射就是KKM映射.定理1 设P, Q是满足H0条件的抽象凸度量空间(X, d, C)的两非空子集,且(P, Q)为邻近对,非自映射F:
$P \longrightarrow 2^{Q}$ 是非空闭值R-KKM映射,则{F(x): x∈P}有有限交性质.证 用反证法. 假设{F(x): x∈P}没有有限交性质,则存在{x0, x1, …, xn}∈〈P〉, 使得
$\bigcap\limits_{i=0}^{n} F\left(x_{i}\right)=\varnothing$ .因为F是R-KKM映射,对{x0, x1, …, xn}∈〈P〉, 存在{y0, y1, …, yn}∈〈Q〉满足条件:
使得对任意非空子集J⊂N, 都有coC{yj: j∈J}⊂F({xj: j∈J}).
记Y=coC{y0, y1, …yn}, 定义函数β:
$Y \longrightarrow[0, 1]$ 为$\beta_{i}(y)=\frac{d\left(y, F\left(x_{i}\right) \cap Y\right)}{\sum\limits_{i=0}^{n} d\left(y, F\left(x_{i}\right) \cap Y\right)} i=0, 1, \cdots , n $ , ∀y∈Y.由于
$\bigcap_{i=0}^{n} F\left(x_{i}\right)=\emptyset$ , 所以有$\sum\limits_{i=0}^{n} d\left(y, F\left(x_{i}\right) \bigcap Y\right)>0$ , ∀y∈Y, 且βi(y)≥0, i=0, 1, …, n, ∀y∈Y, 以及$\sum\limits_{i=0}^{n} \beta_{i}(y)=1$ . 于是定义映射g:$Y \longrightarrow \Delta_{n}$ 为$g(y)=\sum\limits_{i=0}^{n} \beta_{i}(y) \boldsymbol{e}^{i}$ , ∀y∈Y, 其中ei表示第i个坐标分量为1而其它坐标分量为0的n+1维单位向量.由H0条件知存在连续映射h:
$\Delta_{n} \longrightarrow Y$ , 使得对任意J⊂N, 都有h(ΔJ)⊂coC{yj: j∈J}.于是连续复合映射
$g \circ h: \Delta_{n} \longrightarrow \Delta_{n}$ 存在不动点,即存在e∈Δn, 使得$\boldsymbol{e}=g \circ h(\boldsymbol{e})$ . 也即存在点y*=h(e), 使得$\boldsymbol{e}=g\left(y^{*}\right)=\sum\limits_{i=0}^{n} \beta_{i}\left(y^{*}\right) \boldsymbol{e}^{i}$ .记I(y*)={i: βi(y*) > 0, i=0, 1, …, n}={i: d(y, F(xi)∩Y) > 0, i=0, 1, …, n}. 从而对任意i∈I(y*), 都有d(y, F(xi)∩Y) > 0, 因此对任意i∈I(y*), 都有y*∉F(xi)∩Y, 即y*∉ ∪i∈I(y*)(F(xi)∩Y).
另一方面有
$y^{*}=h(\boldsymbol{e})=h\left(g\left(y^{*}\right)\right)=h\left(\sum\limits_{i=0}^{n} \beta_{i}\left(y^{*}\right) \boldsymbol{e}^{i}\right)=h\left(\sum\limits_{i \in I\left(y^{*}\right)} \beta_{i}\left(y^{*}\right) \boldsymbol{e}^{i}\right) \subset c o_{C}\left\{y_{i}: i \in I\left(y^{*}\right)\right\}$ .因此y*=h(e)⊂coC{yi: i∈I(y*)}⊂∪i∈I(y*)(F(xi)∩Y). 这就导致了矛盾. 定理得证.
定理2 设P, Q是满足H0条件的抽象凸度量空间(X, d, C)的两非空子集,且(P, Q)为邻近对,非自映射F:
$P \longrightarrow 2^{Q}$ 是非空闭值R-KKM映射,且存在x∈P, 使得F(x)是紧集(或者存在某些x∈P, 使得F(x)的交是紧集), 则{F(x): x∈P}有任意交性质.
-
定义5 设(P, Q)是抽象凸度量空间(X, d, C)的两非空抽象凸邻近对,若
其中xi∈P, yi∈Q, N={0, 1, …, n}则有(coC{x0, x1, …, xn}, coC{y0, y1, …, yn})也是邻近对. 那么称该性质为抽象凸邻近对性质,简记为CPP性质.
注3 由CPP性质,显然有d(coC{x0, x1, …, xn}, coC{y0, y1, …, yn})=d(P, Q).
定理3 设P, Q是满足H0条件的抽象凸度量空间(X, d, C)的两非空紧抽象凸子集,且(P, Q)为满足CPP性质的邻近对,非自映射F:
$P \longrightarrow 2^{Q}$ 是非空抽象凸值、非空开逆值R-KKM映射,则一定存在x*∈P, 使得d(x*, F(x*))=d(P, Q)成立.证 定义集值映射G:
$Q \longrightarrow 2^{P}$ 为G(y)=P\F-1(y), ∀y∈Q.若存在y0∈Q0, 使得G(y0)=Ø, 则F-1(y0)⊃P, 于是对任意x∈P, 都有y0∈F(x). 由y0∈Q及邻近对条件可知存在x0∈P, 使得d(x0, y0)=d(P, Q).
特殊地,当y0∈F(x0)时,d(P, Q)≤d(x0, F(x0))≤d(x0, y0)=d(P, Q), 即x0是P上的最佳邻近点.
若对任意y∈Q, 都有G(y)≠Ø, 则由F满足的条件有G为非空闭值集值映射.
又因为∪y∈QF-1(y)是P的开覆盖,所以有
由定理2知G不是R-KKM映射,则存在{x0, x1, …, xn}∈〈P〉, 对任意{y0, y1, …, yn}∈〈Q〉, 满足条件d(xj, yj)=d(P, Q), ∀j∈N={0, 1, …, n}, 都存在非空子集J⊂N, 使得
为了叙述方便,不妨设J=N, 使得
$c o_{C}\left\{x_{j}: j \in N\right\} \not \subset G\left(\left\{y_{j}: j \in N\right\}\right)=\bigcup\limits_{i=0}^{n} G\left(y_{i}\right)$ .于是存在x*∈coC{xi: i∈N}, 但是x*∉∪i∈NG(yi), 从而x*∈∩i∈NF-1(yi). 所以对任意i∈N, 都有yi∈F(x*). 由F(x*)是抽象凸,有coC{yi: i∈N}⊂F(x*). 由CPP性质可知,存在点y*∈coC{yi: i∈N}使得d(x*, y*)=d(P, Q).
因此d(P, Q)≤d(x*, F(x*))≤d(x*, y*)=d(P, Q), 即d(x*, F(x*))=d(P, Q). 得证.
定理4 设P是满足H0条件的抽象凸度量空间(X, d, C)的两个非空紧抽象凸子集,且(P, Q)为满足CPP性质的邻近对,映射F:
$P \longrightarrow 2^{P}$ 是非空抽象凸值、开逆值的,则一定存在x*∈P, 使得d(x*, F(x*))=0成立,即F存在不动点x*∈P.注4 本文在满足H0条件的抽象凸度量空间中建立了邻近对上的非自映射的KKM引理,作为应用证明了最佳邻近点的存在性. 该文将文献[29] 的结论推广到了抽象凸度量空间.