留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

一类带p(x)-双调和算子的Kirchhoff型方程解的存在性

上一篇

下一篇

余颖, 储昌木, 何忠菊. 一类带p(x)-双调和算子的Kirchhoff型方程解的存在性[J]. 西南师范大学学报(自然科学版), 2023, 48(1): 26-31. doi: 10.13718/j.cnki.xsxb.2023.01.004
引用本文: 余颖, 储昌木, 何忠菊. 一类带p(x)-双调和算子的Kirchhoff型方程解的存在性[J]. 西南师范大学学报(自然科学版), 2023, 48(1): 26-31. doi: 10.13718/j.cnki.xsxb.2023.01.004
YU Ying, CHU Changmu, HE Zhongju. Existence of Solutions for a Class of Kirchhoff Type Equation Involving the p(x)-Biharmonic Operators[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(1): 26-31. doi: 10.13718/j.cnki.xsxb.2023.01.004
Citation: YU Ying, CHU Changmu, HE Zhongju. Existence of Solutions for a Class of Kirchhoff Type Equation Involving the p(x)-Biharmonic Operators[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(1): 26-31. doi: 10.13718/j.cnki.xsxb.2023.01.004

一类带p(x)-双调和算子的Kirchhoff型方程解的存在性

  • 基金项目: 国家自然科学基金项目(11861021,11661021)
详细信息
    作者简介:

    余颖,硕士研究生,主要从事非线性分析的研究 .

    通讯作者: 储昌木,教授; 
  • 中图分类号: O176.3

Existence of Solutions for a Class of Kirchhoff Type Equation Involving the p(x)-Biharmonic Operators

  • 摘要: 研究了一类带p(x)-双调和算子的Kirchhoff型方程,基于变指数Lebesgue-Sobolev空间中的相关理论,利用变分方法,获得了该方程非平凡弱解的存在性.
  • 加载中
  • [1] AYAZOGLU R, ALISOY G, EKINCIOGLU I. Existence of One Weak Solution for p(x)-Biharmonic Equations Involving a Concave-Convex Nonlinearity[J]. Matematicki Vesnik, 2017, 69(4): 296-307.
    [2] BARAKET S, RDAULESCU V D. Combined Effects of Concave-Convex Nonlinearities in a Fourth-Order Problem With Variable Exponent[J]. Advanced Nonlinear Studies, 2016, 16(3): 409-419. doi: 10.1515/ans-2015-5032
    [3] HEIDARKHANI S, ALISOY G A, MORADI S, et al. Existence of One Weak Solution for p(x)-Biharmonic Equations With Navier Boundary Conditions[J]. Zeitschrift Für Angewandte Mathematik und Physik, 2016, 67(3): 1-13.
    [4] KEFI K. For a Class of p(x)-Biharmonic Operators With Weights[J]. Revista de la Real Academia de Ciencias Exactas, Físicas Naturales(Serie A), 2019, 113(2): 1557-1570.
    [5] ZHOU Z. On a p(x)-Biharmonic Problem With Navier Boundary Condition[J]. Boundary Value Problems, 2018, 149: 1-14.
    [6] 蒙璐, 储昌木, 雷俊. 一类带有变指数增长的Neumann问题[J]. 西南大学学报(自然科学版), 2021, 43(6): 82-88. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202106011.htm
    [7] 陈佳, 李麟. 涉及Δλ算子的Kirchhoff方程基态解的存在性[J]. 西南师范大学学报(自然科学版), 2022, 47(6): 41-44. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xsxb.2022.06.007
    [8] 鲁雄, 王跃. 一类传送带问题解的存在性[J]. 西南大学学报(自然科学版), 2022, 44(2): 96-102. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202202012.htm
    [9] AFROUZI G A, MIRZAPOUR M, CHUNG N T. Existence and Multiplicity of Solutions for Kirchhoff Type Problems Involving p(x)-Biharmonic Operators[J]. Zeitschrift Für Analysis und Ihre Anwendungen, 2014, 33(3): 289-303. doi: 10.4171/ZAA/1512
    [10] DARHOUCHE O. Existence and Multiplicity Results for a Class of Kirchhoff Type Problems Involving the p(x)-Biharmonic Operator[J]. Boletim da Sociedade Paranaense de Matemática, 2019, 37(2): 23-33.
    [11] 缪清. 一类带p(x)-双调和算子的Kirchhoff型问题的多解性[J]. 安徽大学学报(自然科学版), 2020, 44(1): 26-30. doi: https://www.cnki.com.cn/Article/CJFDTOTAL-AHDX202001005.htm
    [12] FAN X L, ZHAO D. On the Spaces Lp(x) and Wm, p(x)(Ω) [J]. Journal of Mathematical Analysis and Applications, 2001, 263(1): 424-446.
    [13] YUCEDAG Z. Existence of Solutions for p(x)-Laplacian Equations Without Ambrosetti-Rabinowitz Type Condition[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38(3): 1023-1033. doi: 10.1007/s40840-014-0057-1
    [14] AMROUSS EL A, OURRAOUI A. Existence of Solutions for a Boundary Problem Involving p(x)-Biharmonic Operator[J]. Boletim da Sociedade Paranaense de Matemática, 2013, 31(1): 179-192.
    [15] AMROUSS EL A, MORADI F, MOUSSAOUI M. Existence of Solutions for Fourth-Order PDEs With Variable Exponents[J]. Electronic Journal of Differential Equations, 2009, 2009(153): 1-13.
    [16] WILLEM M. Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications[M]. Boston: Birkhäuser, 1996: 7-36.
    [17] AMBROSETTI A, RABINOWITZ P H. Dual Variational Methods in Critical Point Theory and Applications[J]. Journal of Functional Analysis, 1973, 14(4): 349-381.
  • 加载中
计量
  • 文章访问数:  918
  • HTML全文浏览数:  918
  • PDF下载数:  95
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-04
  • 刊出日期:  2023-01-20

一类带p(x)-双调和算子的Kirchhoff型方程解的存在性

    通讯作者: 储昌木,教授; 
    作者简介: 余颖,硕士研究生,主要从事非线性分析的研究
  • 贵州民族大学 数据科学与信息工程学院,贵阳 550025
基金项目:  国家自然科学基金项目(11861021,11661021)

摘要: 研究了一类带p(x)-双调和算子的Kirchhoff型方程,基于变指数Lebesgue-Sobolev空间中的相关理论,利用变分方法,获得了该方程非平凡弱解的存在性.

English Abstract

  • Ω$\mathbb{R}$N(N≥3)是具有光滑边界Ω的有界域,考虑一类带p(x)-双调和算子的Kirchhoff型方程

    其中ab>0,pC(Ω),$1 < p^{-}=\inf\limits _{x \in \bar{\varOmega}} p(x) \leqslant p^{+}=\sup\limits _{x \in \bar{\varOmega}} p(x) < N$fgαβC(Ω),对于所有的xΩf(x),g(x)>0,Δp(x)2u=Δ(|Δu|p(x)-2Δu)为p(x)-双调和算子.

    近年来,涉及p(x)-拉普拉斯算子的椭圆方程及变分方法的研究,受到了许多学者的关注[1-8]. 特别地,文献[1]研究了涉及凹凸非线性项的p(x)-双调和方程

    针对q(x),r(x)和p(x)满足不同的条件,分别应用强制弱下半连续性、Ekeland’s变分原理及山路引理等变分方法获得了方程(2)非平凡弱解的存在性. 然而,关于带p(x)-双调和算子的Kirchhoff型方程的研究结果相对较少[9-11]. 受以上文献的启发,本文讨论方程(1)非平凡弱解的存在性.

    定理1   假设ab>0,p(x),α(x),β(x)∈C(Ω),f(x),g(x)>0满足

    则方程(1)至少有一个非平凡弱解.

  • Lp(x)对应的范数为

    其中γ=(γ1,…,γN)为多重指标,$|\gamma|=\sum\limits_{i=1}^N \gamma_i, W^{k, p(x)}$对应的范数为

    由文献[12]知,Lp(x)Wkp(x)(Ω)为可分的自反Banach空间. 用W0kp(x)(Ω)表示C0(Ω)在Wkp(x)(Ω)中的闭包,记

    其范数为

    由文献[12]知,在X中‖ ‖与‖ ‖X等价,X是可分的自反Banach空间.

    命题1[13](Hölder不等式)   若p(x),q(x)∈C+(Ω)满足$\frac{1}{p(x)}+\frac{1}{q(x)}=1$,则对所有的uLp(x)(Ω),vLq(x)(Ω),有

    命题2[14]   令$\rho(u)=\int_{\varOmega}|\Delta u|^{p(x)} \mathrm{d} x$uX. 若‖u‖≥1,则有‖upρ(u)≤‖up+;若‖u‖≤1,则有‖up+ρ(u)≤‖up;‖u‖=0当且当ρ(u)=0.

    命题3[14]   假设q(x)∈C+(Ω)且$q(x) < p^*(x)=\frac{N p(x)}{N-2 p(x)}$xΩ. 则XLq(x)(Ω)的嵌入是连续且紧的.

    命题4[15]   设$\psi(u)=\int_{\varOmega} \frac{1}{p(x)}|\Delta u|^{p(x)} \mathrm{d} x$,则

    且满足:

    (ⅰ) ψ′(u)是连续且有界的严格单调算子;

    (ⅱ) ψ′(u)是S+型的,即若unu$\lim \sup\limits _{n \rightarrow \infty} \psi^{\prime}\left(u_n\right)\left(u_n-u\right) \leqslant 0$,则有unu

    (ⅲ) ψ′(u)是同胚的.

    定义1   如果对任意的vX,有

    则称uX为方程(1)的弱解. 显然,方程(1)的弱解与泛函

    的临界点等价.

  • 在证明主要结果前,先证明泛函J满足(PS)c条件.

    引理1   当定理1的条件成立时,泛函J满足(PS)c条件,其中$c < \frac{a^2}{2 b}$.

       设{un}⊂XJ的(PS)c序列,即

    且在X*J′(un)→0(n→∞). 其中X*X的对偶空间.

    首先证明序列{un}在X中有界. 令$\theta \in\left(p^{+}, \min \left\{\alpha^{-}, \frac{2\left(p^{-}\right)^2}{p^{+}}\right\}\right)$,则由(3)式和(4)式,有

    p>1知,{un}在X中有界.

    接下来证明在Xunu. 由于X是自反Banach空间,且{un}在X中有界,所以存在子列(仍用{un}表示)和uX,使得当n→∞时,

    由(6)式和Hölder不等式可知,当n→∞时,

    类似地,当n→∞时,

    因此

    由(4)式可知,〈J′(un),unu〉→0,即

    综上所述,可得

    因为{un}在X中有界,所以存在子列(仍用{un}表示)和uX,使得当n→∞时,

    如果$t_0=\frac{a}{b}$,则

    由(6)式和Hölder不等式,对任意vX,有

    因为

    且当n→∞时,〈J′(un),v〉→0,故

    因此

    根据变分法基本原理[16]可得

    又因为f(x),g(x)>0,所以u=0. 因此

    综上所述,当$t_0=\frac{a}{b}$时,有

    这与$J\left(u_n\right) \rightarrow c < \frac{a^2}{2 b}$矛盾,故$t_0 \neq \frac{a}{b}$. 因此

    由(9)式可得

    根据命题4,当n→∞时,在X中有unu. 因此,当$c < \frac{a^2}{2 b}$时,J满足(PS)c条件.

    下面验证泛函J满足山路引理.

    引理2   当定理1的条件成立时,泛函J具有如下山路几何结构:

    (ⅰ) 存在ρδ>0,使得对任意uX且‖u‖=ρ,有J(u)≥δ>0;

    (ⅱ) 存在wX满足‖w‖>ρJ(w) < 0.

       由紧嵌入XLα(x)(Ω)知,存在C>0,使得|u|α(x)Cu‖.

    设‖u‖=ρ < 1,则

    注意到p+ < 2pp+ < α,故存在ρδ>0,使得对任意uX且‖u‖=ρ,有J(u)≥δ>0.

    φC0(Ω),φ>0,且t>1,则

    由(3)式可得,当t→+∞时,有J(tφ)→-∞. 则当t>1足够大时,令w=tφ,使得‖w‖>ρJ(w) < 0.

    定理1的证明   由引理2知,J具有山路几何结构. 定义

    注意到对于所有的uX\{0},有$\max\limits _{t>0}\left\{a t-\frac{b}{2} t^2\right\}=\frac{a^2}{2 b}$,则

    因此$c < \frac{a^2}{2 b}$. 设{un}是J的一个(PS)c序列,由引理1知,J满足(PS)c条件. 由山路引理[17]可得方程(1)有一个解$\tilde u$,且$J(\stackrel{\sim}{u})=c$. 由$J(\tilde{u})=c>0=J(0)$,可得$\tilde u$是方程(1)的一个非平凡弱解. 定理1得证.

参考文献 (17)

目录

/

返回文章
返回