-
开放科学(资源服务)标识码(OSID):
-
抗生素在农业、水产养殖以及保障人们健康方面发挥着关键作用[1]. 当前,渔业和畜牧业对抗生素的需求量大幅增加[2]. 例如,美国每年约使用1.6万t抗菌化合物,其中约70%用于非药物治疗. 澳大利亚、新西兰、加拿大和欧盟国家也观察到类似的抗生素使用模式[3]. 水体中的抗生素通常来源于城市污水、制药业废水、畜牧业粪便废水、垃圾处理过程中的渗滤液和水产养殖过程中的饵料添加剂等[4]. 因此,河流、湖泊、地下水和废水处理厂废水中抗生素的检出率较高,其质量浓度变化从1 ng/L到1 000 μg/L[1, 5]. 残留的抗生素不仅会毒害水生生物,还会造成耐药性问题[5-6]. 当前,抗生素污染已引起全球科学界的关注.
光合自养型微藻是水生生态系统中的主要初级生产者[7]. 水体中藻类物种丰富,密度及生物量庞大,且藻类对污染物敏感性高,常作为重金属、农药和抗生素等污染物生态风险评估的指示性物种[5, 8]. 抗生素是微生物产生的一类次级代谢产物,可以影响藻类的生长和存活[9]. 其中,链霉素是一种氨基糖苷类抗生素,可以用来控制水果、蔬菜、烟草、观赏植物、池塘和水族箱上的细菌、真菌和藻类[10]. 链霉素能与原核生物的30S核糖体结合,抑制蛋白质的生物合成[11],还能阻碍生物的叶绿体发育,降低原核生物密度并抑制其生长繁殖[12]. Harrass等[13]研究发现,水体中的蓝藻类对链霉素的敏感性较高,其质量浓度变化范围为0.09~0.86 mg/L,绿藻类对链霉素敏感性相对较低,质量浓度变化范围为0.66~37 mg/L. 当前,有关抗生素对水体中浮游植物生态毒性的研究报道较广泛[14-17],而关于抗生素与淡水微藻生理活性的关系、叶绿素荧光的响应机制报道较少. 有研究发现,叶绿素荧光可以反映光合系统Ⅱ(PS Ⅱ)与环境胁迫变化的响应[15-16]. 根据瞬时叶绿素荧光动力学参数变化特征,研究人员发现藻类生理状态与光合作用过程中的电子和光子流动有明显的相关性[15-17]. 因此,本文通过研究链霉素对蓝藻-拟柱孢藻(Raphidiopsis raciborskii)和广布种绿藻-四尾栅藻(Scenedesmus quadricauda)的生长、叶绿素荧光和半致死浓度(EC50)的影响,探究不同门类微藻对链霉素的敏感性和耐受性差异,特别是光合系统Ⅱ对链霉素的响应特征,旨在为藻类毒理学研究提供新的视角,并为藻类对抗生素等新型污染物的响应机制提供理论依据.
Dynamic Response of Chlorophyll Fluorescence in Microalgae Driven by Streptomycin
-
摘要:
为了探究微藻对链霉素的敏感性, 通过叶绿素荧光动力学(OJIP)分析蓝藻-拟柱孢藻(Raphidiopsis raciborskii)和绿藻-四尾栅藻(Scenedesmus quadricauda)对链霉素的响应. 研究结果表明, 链霉素对拟柱孢藻和四尾栅藻的反应中心耗散的能量(DI0/RC)、单位光面积吸收的能量(ABS/CS0)和单位反应中心吸收的能量(ABS/RC)均有显著的促进作用, 对拟柱孢藻单位反应中心捕获的用于还原QA的能量(TR0/RC)起抑制作用, 且链霉素能够明显降低拟柱孢藻的光合驱动力. 利用质量浓度为0.05~1.0 mg/L和1.0~20.0 mg/L的链霉素分别培养拟柱孢藻和四尾栅藻, 其比生长率分别是对照组(0.00 mg/L)的0.74~0.25和1.19~0.51倍. 拟柱孢藻丙二醛含量和超氧化物歧化酶活性明显随链霉素质量浓度的升高而降低, 过氧化氢酶活性随链霉素质量浓度的升高而增加. 四尾栅藻的过氧化氢酶活性、丙二醛含量和超氧化物歧化酶活性对链霉素质量浓度响应敏感度低. 因此, 本研究认为蓝藻对链霉素的敏感性比绿藻显著, 主要原因是拟柱孢藻和四尾栅藻的能量分布存在显著差异.
-
关键词:
- 链霉素 /
- 瞬时叶绿素荧光诱导动力学曲线 /
- 光合机构 /
- 拟柱孢藻 /
- 四尾栅藻
Abstract:The response of Raphidiopsis raciborskii and Scenedesmus quadricauda on streptomycin was determined by OJIP chlorophyll fluorescence kinetics to explore the sensitivity of microalgae to streptomycin. The results showed that streptomycin significantly facilitate the DI0/RC, ABS/CS0 and ABS/RC in Raphidiopsis raciborskii and Scenedesmus quadricauda, inhibited TR0/RC, and markedly reduced the photosynthetic oxygen evolution and driving force in Raphidiopsis raciborskii. The specific growth rates of Raphidiopsis raciborskii (0.05~1.0 mg/L) and Scenedesmus quadricauda (1.0~20.0 mg/L) in streptomycin treatment group was 0.74~0.25 and 1.19~0.51 times as much as that of control (0.00 mg/L), respectively. This study found that the malondialdehyde and superoxide dismutase activities were decreased significantly, and catalase activity was increased in Raphidiopsis raciborskii with increase of streptomycin concentration. Malondialdehyde, superoxide dismutase and catalase activities in Scenedesmus quadricaudawere not significantly affectedby streptomycin. Therefore, our results suggested that cayanobacteria was more sensitive to streptomycin than green algae, the main reason is due to the significant difference on energy distribution between Raphidiopsis raciborskii and Scenedesmus quadricauda.
-
Key words:
- streptomycin /
- OJIP /
- photosynthetic apparatus /
- Raphidiopsis raciborskii /
- Scenedesmus quadricauda .
-
[1] SARMAH A K, MEYER M T, BOXALL A B A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026 [2] ANDREOZZI R, MAROTTA R, PINTO G, et al. Carbamazepine in Water: Persistence in the Environment, Ozonation Treatment and Preliminary Assessment on Algal Toxicity[J]. Water Research, 2002, 36(11): 2869-2877. doi: 10.1016/S0043-1354(01)00500-0 [3] 于泳. 农田土壤中农药及抗生素快速筛查技术研究[D]. 北京: 中国农业科学院, 2016. [4] ASHBOLT N J, AMÉZQUITA A, BACKHAUS T, et al. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance[J]. Environmental Health Perspectives, 2013, 121(9): 993-1001. doi: 10.1289/ehp.1206316 [5] LIN M, WU X, YAN Q, et al. Incidence of Antimicrobial-Resistance Genes and Integrons in Antibiotic-Resistant Bacteria Isolated from Eels and Aquaculture Ponds[J]. Diseases of Aquatic Organisms, 2016, 120(2): 115-123. doi: 10.3354/dao03013 [6] QIAN H F, LI J J, PAN X J, et al. Effects of Streptomycin on Growth of Algae Chlorella Vulgaris and Microcystis Aeruginosa[J]. Environmental Toxicology, 2012, 27(4): 229-237. doi: 10.1002/tox.20636 [7] 孙传范. 微藻水环境修复及研究进展[J]. 中国农业科技导报, 2011, 13(3): 92-96. [8] ISIDORI M, LAVORGNA M, NARDELLI A, et al. Toxic and Genotoxic Evaluation of Six Antibiotics on Non-Target Organisms[J]. Science of the Total Environment, 2005, 346(1-3): 87-98. doi: 10.1016/j.scitotenv.2004.11.017 [9] BEN Y J, FU C X, HU M, et al. Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review[J]. Environmental Research, 2019, 169: 483-493. doi: 10.1016/j.envres.2018.11.040 [10] THOMPSON A C, SIKOROWSKI P P. Effect of Streptomycin Sulfate on the Chemistry and Growth of Heliothis Virescens[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1983, 74(2): 255-258. doi: 10.1016/0742-8413(83)90098-1 [11] SONG W, KIM Y H, SIM S H, et al. Antibiotic Stress-Induced Modulation of the Endoribonucleolytic Activity of RNase Ⅲ and RNase G Confers Resistance to Aminoglycoside Antibiotics in Escherichia Coli[J]. Nucleic Acids Research, 2014, 42(7): 4669-4681. doi: 10.1093/nar/gku093 [12] SCHWARTZBACH S D, SCHIFF J A. Chloroplast and Cytoplasmic Ribosomes of Euglena: Selective Binding of Dihydrostreptomycin to Chloroplast Ribosomes[J]. Journal of Bacteriology, 1974, 120(1): 334-341. doi: 10.1128/jb.120.1.334-341.1974 [13] HARRASS M C, KINDIG A C, TAUB F B. Responses of Blue-Green and Green Algae to Streptomycin in Unialgal and Paired Culture[J]. Aquatic Toxicology, 1985, 6(1): 1-11. doi: 10.1016/0166-445X(85)90015-3 [14] DAUGHTON C G, TERNES T A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?[J]. Environmental Health Perspectives, 1999, 107(S 6): 907-938. [15] STRASSER R J, SRIVASTAVA A, TSIMILLI-MICHAEL M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples[M] //Probing Photosynthesis: Mechanisms Regulation and Adaptation. London: Taylor and Francis Press, 2000. [16] 杜雨欣, 代潇潇, 杨燕君, 等. 不同氮源对淡水多甲藻生长和叶绿素荧光参数的影响[J]. 西南师范大学学报(自然科学版), 2021, 46(10): 38-44. [17] STRASSER B J, STRASSER R J. Measuring Fast Fluorescence Transients to Address Environmental Questions: The JIP-Test[M] //Photosynthesis: from Light to Biosphere. Dordrecht: Springer Netherlands, 1995: 4869-4872. [18] ICHIMURA T. Isolation and Culture Methods of Algae[M] //Methods in Phycological Studies. Tokyo: Kyoritu Shuppan, 1979. [19] BAI F, LIU R, YANG Y J, et al. Dissolved Organic Phosphorus Use by the Invasive Freshwater Diazotroph Cyanobacterium, Cylindrospermopsis Raciborskii[J]. Harmful Algae, 2014, 39: 112-120. doi: 10.1016/j.hal.2014.06.015 [20] KAUTSKY H, HIRSCH A. Neue Versuche Zur Kohlensäureassimilation[J]. Naturwissenschaften, 1931, 19(48): 964. [21] GRENNI P, ANCONA V, BARRA CARACCIOLO A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review[J]. Microchemical Journal, 2018, 136: 25-39. doi: 10.1016/j.microc.2017.02.006 [22] ECKERT E M, QUERO G M, DI CESARE A, et al. Antibiotic Disturbance Affects Aquatic Microbial Community Composition and Food Web Interactions but not Community Resilience[J]. Molecular Ecology, 2019, 28(5): 1170-1182. doi: 10.1111/mec.15033 [23] VAN BRUGGEN A H C, GOSS E M, HAVELAAR A, et al. One Health-Cycling of Diverse Microbial Communities as a Connecting Force for Soil, Plant, Animal, Human and Ecosystem Health[J]. Science of the Total Environment, 2019, 664: 927-937. doi: 10.1016/j.scitotenv.2019.02.091 [24] QUINLAN E L, NIETCH C T, BLOCKSOM K, et al. Temporal Dynamics of Periphyton Exposed to Tetracycline in Stream Mesocosms[J]. Environmental Science & Technology, 2011, 45(24): 10684-10690. [25] DANNERM C, ROBERTSON A, BEHRENDS V, et al. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406 [26] BAI F, JIA Y L, YANG C P, et al. Multiple Physiological Response Analyses Aid the Understanding of Sensitivity Variation between Microcystis Aeruginosa and Chlorella Sp. under Paraquat Exposures[J]. Environmental Sciences Europe, 2019, 31: 1-17. doi: 10.1186/s12302-018-0176-7 [27] CHO U H, SEO N H. Oxidative Stress in Arabidopsis Thaliana Exposed to Cadmium is Due to Hydrogen Peroxide Accumulation[J]. Plant Science, 2005, 168(1): 113-120. [28] MORELLI E, SCARANO G. Copper-Induced Changes of Non-Protein Thiols and Antioxidant Enzymes in the Marine Microalga Phaeodactylum Tricornutum[J]. Plant Science, 2004, 167(2): 289-296. [29] TORRES M A, BARROS M P, CAMPOS S C G, et al. Biochemical Biomarkers in Algae and Marine Pollution: A Review[J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 1-15. [30] MITTLER R. Oxidative Stress, Antioxidants and Stress Tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. [31] MULLER P, LI X P, NIYOGI K K. Non-Photochemical Quenching. A Response to Excess Light Energy[J]. Plant Physiology, 2001, 125(4): 1558-1566. [32] PERRON M C, QIU B S, BOUCHER N, et al. Use of Chlorophyll a Fluorescence to Detect the Effect of Microcystins on Photosynthesis and Photosystem Ⅱ Energy Fluxes of Green Algae[J]. Toxicon, 2012, 59(5): 567-577. [33] BRESSAN M, BRUNETTI R. The Effects of Nitriloacetic Acid, Cd and Hg on the Marine Algae Dunaliella Tertiolecta and Isochrysis Galbana[J]. Water Research, 1988, 22(5): 553-556. [34] WEI L P, THAKKAR M, CHEN Y H, et al. Cytotoxicity Effects of Water Dispersible Oxidized Multiwalled Carbon Nanotubes on Marine Alga, Dunaliella Tertiolecta[J]. Aquatic Toxicology, 2010, 100(2): 194-201. [35] THAKKAR M, MITRA S, WEI L P. Effect on Growth, Photosynthesis, and Oxidative Stress of Single Walled Carbon Nanotubes Exposure to Marine Alga Dunaliella Tertiolecta[J]. Journal of Nanomaterials, 2016, 2016: 1-9. [36] LAVERGNE J, TRISSL H W. Theory of Fluorescence Induction in Photosystem Ⅱ: Derivation of Analytical Expressions in a Model Including Exciton-Radical-Pair Equilibrium and Restricted Energy Transfer between Photosynthetic Units[J]. Biophysical Journal, 1995, 68(6): 2474-2492. [37] APPENROTH K J, STÖCKEL J, SRIVASTAVA A, et al. Multiple Effects of Chromate on the Photosynthetic Apparatus of Spirodela Polyrhiza as Probed by OJIP Chlorophyll a Fluorescence Measurements[J]. Environmental Pollution, 2001, 115(1): 49-64. [38] 张红波, 董聪聪, 杨燕君, 等. 基于叶绿素荧光探讨链霉素对念珠藻生长及光合毒性效应[J]. 水生生物学报, 2019, 43(3): 664-669. [39] LAZÁR D, POSPÍŠIL P, NAUŠ J. Decrease of Fluorescence Intensity after the K Step in Chlorophyll a Fluorescence Induction is Suppressed by Electron Acceptors and Donors to Photosystem 2[J]. Photosynthetica, 1999, 37(2): 255-265.