留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

关于不定方程 x3±8=19 y2

上一篇

下一篇

安莹,罗明. 关于不定方程 x3±8=19 y2[J]. 西南师范大学学报(自然科学版), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.003
引用本文: 安莹,罗明. 关于不定方程 x3±8=19 y2[J]. 西南师范大学学报(自然科学版), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.003
AN Ying,LUO Ming. On the Diophantine Equation x3 ± 8=19 y2[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.003
Citation: AN Ying,LUO Ming. On the Diophantine Equation x3 ± 8=19 y2[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(12). doi: 10.13718/j.cnki.xsxb.2014.12.003

关于不定方程 x3±8=19 y2

On the Diophantine Equation x3 ± 8=19 y2

  • 摘要: With the elementary method of Pell equation ,recurrent sequence ,congruent formula ,quadratic residue ,and Jacobi symbol ,it has proved that the Diophantine equation x3 +8=19y2 has only the integer solutions of (-2 ,0) ,(62 ,± 112) ,and the Diophantine equation x3 -8=19y2 has only the integer solu‐tions of (x ,y)= (2 ,0) ,(3 , ± 1) ,(14 , ± 12) .In the process of proving the conclusion ,the authors cor‐rected the conclusion that the Diophantine equation x3 -1=38 y2 has only the integer solutions of (x ,y)=(1 ,0) ,and then prove all integer solutions of x3 -1=38y2 are (x ,y)= (1 ,0) ,(7 ± 3) .
  • 加载中
  • 加载中
计量
  • 文章访问数:  296
  • HTML全文浏览数:  202
  • PDF下载数:  0
  • 施引文献:  0
出版历程

关于不定方程 x3±8=19 y2

  • 西南大学数学与统计学院,重庆400715; 和田师范专科学校数学系,新疆和田848000 ; 西南大学数学与统计学院,重庆,400715

摘要: With the elementary method of Pell equation ,recurrent sequence ,congruent formula ,quadratic residue ,and Jacobi symbol ,it has proved that the Diophantine equation x3 +8=19y2 has only the integer solutions of (-2 ,0) ,(62 ,± 112) ,and the Diophantine equation x3 -8=19y2 has only the integer solu‐tions of (x ,y)= (2 ,0) ,(3 , ± 1) ,(14 , ± 12) .In the process of proving the conclusion ,the authors cor‐rected the conclusion that the Diophantine equation x3 -1=38 y2 has only the integer solutions of (x ,y)=(1 ,0) ,and then prove all integer solutions of x3 -1=38y2 are (x ,y)= (1 ,0) ,(7 ± 3) .

English Abstract

参考文献 (0)

目录

/

返回文章
返回