FOXBY H B.Gorenstein Modules and Related Module[J].Math Scand, 1972, 31:267-284.
GOLOD E S. G-Dimension and Generalized Perfect Ideal[J].TrudyMatInstSteklow, 1984, 165:62-66.
VASCONCELOS W V.Divisor Theory in Module Categories[M].Amsterdam:American Elsevier Publishing.
DI Z X, LIU Z K, CHEN J L. Stability of Gorenstein Flat Categories with Respect to a Semidualizing Modules[J].Rocky Mountain JMath, 2015, 45(6):1839-1859.
DI Z X, YANG X Y. Transfer Properties of Gorenstein Homological Dimension with Respect to a Semidualizing Module[J]. JKorean MathSor, 2012, 49(6):1197-1214.
DI Z X, ZHANGX X, LIU Z K, et al.Relative and Tate Homology with Respect to Semidualizing Modules[J]. JAlgebra Appl, 2014, 13(8):1450058.
ENOCHS E E, YASSEMI S. Foxby Equivalence and Cotorsion Theories Relative to Semidualizing Modules[J]. MathScand, 2004, 95(1):33-43.
HOLM H, WHITE D. Foxby Equivalence Over Associative Rings[J]. JMathKyoto Univ, 2006, 47(4):781-808.
申婧雯, 杨晓燕.余纯FPn-平坦模[J].西南大学学报(自然科学版), 2018, 40(6):69-72.
毛海玲, 杨晓燕.左分次GF-封闭环上的Gorenstein分次平坦模[J].西南师范大学学报(自然科学版), 2019, 44(8):18-22.
李倩倩, 杨晓燕. n-强Gorenstein AC投射模[J].西南师范大学学报(自然科学版), 2018, 43(12):36-40.
HOLM H, JRGENSEN P. Semi-dualizing Modules and Related Gorenstein Homological Dimensions[J].JPure ApplAlgebra, 2006, 205(2):423-445.
WHITE D. Gorenstein Projective Dimension with Respect to a Semidualizing Module[J].JCommut Algebra, 2010, 2(1):111-137.
CHRISTENSEN L W, KÖKSAL F, LIANG L. Gorenstein Dimensions of Unbounded Complexes and Change of Base(with an Appendix by Driss Bennis)[J].SciChina Math, 2017, 60(3):401-420.
ENOCHS E E, JENDA O M G. Relative Homological Algebra[M]. Berlin, New York:De Gruyter, 2000.